# Problem: The Haber process is the principal industrial route for converting nitrogen into ammonia:N2 (g) + 3H2 (g)  →  2NH3 (g).Using the thermodynamic data in Appendix C in the textbook, calculate the equilibrium constant for the process at room temperature.

###### FREE Expert Solution

We’re being asked to determine the equilibrium constant (K) at 25 ˚C for the given reaction:

N2 (g) + 3H2 (g)  →  2NH3 (g)

Recall that ΔG˚rxn and K are related to each other:

$\overline{){\mathbf{\Delta G}}{{\mathbf{°}}}_{{\mathbf{rxn}}}{\mathbf{=}}{\mathbf{-}}{\mathbf{RTlnK}}}$

We can use the following equation to solve for ΔG˚rxn:

$\overline{){\mathbf{\Delta G}}{{\mathbf{°}}}_{{\mathbf{rxn}}}{\mathbf{=}}{\mathbf{\Delta H}}{{\mathbf{°}}}_{{\mathbf{rxn}}}{\mathbf{-}}{\mathbf{T\Delta S}}{{\mathbf{°}}}_{{\mathbf{rxn}}}}$

We can get the value of the ΔH˚rxn and ΔS˚rxn of the reaction from the textbook or the internet.

We have:

ΔH˚rxn = -93 kJ/mol

ΔS˚rxn = -198 J/K•mol

For this problem, we need to do the following steps:

Step 1: Use ΔH˚rxn and ΔS˚rxn to calculate for ΔG˚rxn.

Step 2: Calculate for K.

92% (420 ratings)
###### Problem Details

The Haber process is the principal industrial route for converting nitrogen into ammonia:
N2 (g) + 3H2 (g)  →  2NH3 (g).

Using the thermodynamic data in Appendix C in the textbook, calculate the equilibrium constant for the process at room temperature.

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Gibbs Free Energy concept. You can view video lessons to learn Gibbs Free Energy. Or if you need more Gibbs Free Energy practice, you can also practice Gibbs Free Energy practice problems.