Using the equation:

$\overline{){\mathbf{\u2206}}{\mathbf{G}}{{\mathbf{\xb0}}}_{{\mathbf{rxn}}}{\mathbf{}}{\mathbf{=}}{\mathbf{\u2206}}{\mathbf{H}}{{\mathbf{\xb0}}}_{{\mathbf{rxn}}}{\mathbf{}}{\mathbf{-}}{\mathbf{}}{\mathbf{T}}{\mathbf{\u2206}}{\mathbf{S}}{{\mathbf{\xb0}}}_{{\mathbf{rxn}}}}\phantom{\rule{0ex}{0ex}}\mathbf{\u2206}\mathbf{G}{\mathbf{\xb0}}_{\mathbf{rxn}}\mathbf{}\mathbf{=}\mathbf{(}\mathbf{-}\mathbf{115}\mathbf{}\mathbf{kJ}\mathbf{)}\mathbf{}\mathbf{-}\mathbf{(}\mathbf{298}\mathbf{}\overline{)\mathbf{K}}\mathbf{)}\mathbf{(}\mathbf{263}\mathbf{}\frac{\overline{)\mathbf{J}}}{\overline{)\mathbf{K}}}\mathbf{\times}\frac{\mathbf{1}\mathbf{}\mathbf{kJ}}{{\mathbf{10}}^{\mathbf{3}}\mathbf{}\overline{)\mathbf{J}}}\mathbf{)}\phantom{\rule{0ex}{0ex}}\mathbf{\u2206}\mathbf{G}{\mathbf{\xb0}}_{\mathbf{rxn}}\mathbf{}\mathbf{=}\mathbf{(}\mathbf{-}\mathbf{115}\mathbf{}\mathbf{kJ}\mathbf{)}\mathbf{}\mathbf{-}\mathbf{(}\mathbf{-}\mathbf{78}\mathbf{.}\mathbf{374}\mathbf{}\mathbf{kJ}\mathbf{)}$

Calculate the change in Gibbs free energy for each of the sets of ΔH_{rxn}, ΔS_{rxn}, and T given in the following problems. Predict whether or not the reaction will be spontaneous at the temperature indicated. (Assume that all reactants and products are in their standard states.)

ΔH˚_{rxn} = –115 kJ; ΔS˚_{rxn} = +263 J/K; T = 298 K

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Gibbs Free Energy concept. You can view video lessons to learn Gibbs Free Energy. Or if you need more Gibbs Free Energy practice, you can also practice Gibbs Free Energy practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Yu's class at UVU.