Ch.15 - Acid and Base EquilibriumWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The odor of fish is due primarily to amines, especially methylamine (CH3NH2). Fish is often served with a wedge of lemon, which contains citric acid. The amine and the acid react forming a product wit

Problem

The odor of fish is due primarily to amines, especially methylamine (CH3NH2). Fish is often served with a wedge of lemon, which contains citric acid. The amine and the acid react forming a product with no odor, thereby making the less-than-fresh fish more appetizing.

Using data from Appendix D in the textbook, calculate the equilibrium constant for the reaction of citric acid with methylamine, if only the first proton of the citric acid (Ka1) is important in the neutralization reaction.