🤓 Based on our data, we think this question is relevant for Professor Tyson's class at UMASS.

(1) **The rate of a chemical reaction can be written in terms of the change of concentration of reactants and products.**

$\overline{){\mathbf{Rate}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}\frac{\mathbf{-}\mathbf{\u2206}\mathbf{\left[}\mathbf{reactants}\mathbf{\right]}}{\mathbf{a}\mathbf{\u2206}\mathbf{t}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}\frac{\mathbf{+}\mathbf{\u2206}\mathbf{\left[}\mathbf{products}\mathbf{\right]}}{\mathbf{b}\mathbf{\u2206}\mathbf{t}}}$

**The rate of reaction in terms of O _{2} is:**

$\overline{){\mathbf{Rate}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{\mathbf{+}}\frac{\mathbf{\u2206}\mathbf{\left[}{\mathbf{O}}_{\mathbf{2}}\mathbf{\right]}}{\mathbf{\u2206}\mathbf{t}}}$

**The rate of reaction in terms of N _{2}O is:**

$\overline{){\mathbf{Rate}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{\mathbf{-}}\frac{\mathbf{\u2206}\mathbf{\left[}{\mathbf{N}}_{\mathbf{2}}\mathbf{O}\mathbf{\right]}}{\mathbf{2}\mathbf{\u2206}\mathbf{t}}}$

Consider the following reaction: 2 N_{2}O(g) → 2 N_{2}(g) + O_{2}(g). In the first 15.0 s of the reaction, 0.015 mol of O2 is produced in a reaction vessel with a volume of 0.500 L. Predict the rate of change in the concentration of N_{2}O over this time interval. In other words, what is Δ[N_{2}O]/Δt?