Ch.13 - Chemical KineticsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Dinitrogen monoxide decomposes into nitrogen and oxygen when heated. The initial rate of the reaction is 2.4 × 10−2 M/s. What is the initial rate of change of the concentration of N2O (that is, Δ[N2O]/Δt)?2 N2O(g) → 2 N2(g) + O2(g)

Solution: Dinitrogen monoxide decomposes into nitrogen and oxygen when heated. The initial rate of the reaction is 2.4 × 10−2 M/s. What is the initial rate of change of the concentration of N2O (that is, Δ[N2O]

Problem

Dinitrogen monoxide decomposes into nitrogen and oxygen when heated. The initial rate of the reaction is 2.4 × 10−2 M/s. What is the initial rate of change of the concentration of N2O (that is, Δ[N2O]/Δt)?

2 N2O(g) → 2 N2(g) + O2(g)