Ch.11 - Liquids, Solids & Intermolecular ForcesWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: If 42.0 kJ of heat is added to a 32.0-g sample of liquid methane under 1 atm of pressure at a temperature of -170oC, what is the final state of the methane once the system equilibrates? Assume no heat

Problem

If 42.0 kJ of heat is added to a 32.0-g sample of liquid methane under 1 atm of pressure at a temperature of -170oC, what is the final state of the methane once the system equilibrates? Assume no heat is lost to the surroundings. The normal boiling point of methane is -161.5 oC. The specific heats of liquid and gaseous methane are 3.48 and 2.22 J / g, respectively.

There are 32.0 grams of liquid methane (CH4) inside a chamber in a cylinder with a piston. Delta Hvaporization is 8.20 kilojoules per mole and temperature is negative 170 degrees Celsius. The downward pressure on the piston is equal to 1.00 atmospheres, while 42.0 kilojoules of heat are added to the chamber in the cylinder.