🤓 Based on our data, we think this question is relevant for Professor Dixon's class at UCF.

**Clausius-Clapeyron Equation:**

$\overline{){\mathbf{ln}}\left(\frac{{P}_{2}}{{P}_{1}}\right){\mathbf{=}}{\mathbf{-}}\frac{{\mathbf{\Delta H}}_{\mathbf{vap}}}{\mathbf{R}}(\frac{1}{{T}_{2}}-\frac{1}{{T}_{1}})}$

where: **P**_{2} = vapor pressure at T_{2}

**P**_{1} = vapor pressure at T_{1}

Methylamine has a vapor pressure of 344 torr at -25^{o}C and a boiling point of -6.4^{o}C
. Find ΔH_{vap} for methylamine.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Clausius-Clapeyron Equation concept. You can view video lessons to learn Clausius-Clapeyron Equation. Or if you need more Clausius-Clapeyron Equation practice, you can also practice Clausius-Clapeyron Equation practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Dixon's class at UCF.