Ch.10 - Molecular Shapes & Valence Bond TheoryWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The diatomic molecule OH exists in the gas phase. The bond length and bond energy have been measured to be 97.06 pm and 424.7 kJ/mol, respectively. Assume that the OH molecule is analogous to the HF molecule discussed in the chapter and that molecular orbitals result from the overlap of a lowerenergy pz orbital from oxygen with the higher-energy 1s orbital of hydrogen (the O—H bond lies along the z-axis). b. Can the 2px orbital of oxygen form molecular orbitals with the 1s orbital of hydrogen? Explain.

Solution: The diatomic molecule OH exists in the gas phase. The bond length and bond energy have been measured to be 97.06 pm and 424.7 kJ/mol, respectively. Assume that the OH molecule is analogous to the HF m

Problem

The diatomic molecule OH exists in the gas phase. The bond length and bond energy have been measured to be 97.06 pm and 424.7 kJ/mol, respectively. Assume that the OH molecule is analogous to the HF molecule discussed in the chapter and that molecular orbitals result from the overlap of a lowerenergy pz orbital from oxygen with the higher-energy 1s orbital of hydrogen (the O—H bond lies along the z-axis). 

b. Can the 2px orbital of oxygen form molecular orbitals with the 1s orbital of hydrogen? Explain.