Ch.16 - Aqueous Equilibrium WorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Human blood contains one buffer system based on phosphate species and one based on carbonate species. Assuming that blood has a normal pH of 7.4, what are the principal phosphate and carbonate species present? What is the ratio of the two phosphate species? (In the presence of the dissolved ions and other species in blood, Ka1 of H3PO4 = 1.3 × 10−2, Ka2 = 2.3 × 10−7, and Ka3 = 6 × 10−12; Ka1 of H2CO3 = 8 × 10−7 and Ka2 = 1.6 × 10−10.)

Problem

Human blood contains one buffer system based on phosphate species and one based on carbonate species. Assuming that blood has a normal pH of 7.4, what are the principal phosphate and carbonate species present? What is the ratio of the two phosphate species? (In the presence of the dissolved ions and other species in blood, Ka1 of H3PO4 = 1.3 × 10−2, Ka2 = 2.3 × 10−7, and Ka3 = 6 × 10−12; Ka1 of H2CO3 = 8 × 10−7 and Ka2 = 1.6 × 10−10.)