Ch.6 - Thermochemistry WorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Mothballs are composed primarily of the hydrocarbon naphthalene (C10H8). When 1.025 g of naphthalene is burned in a bomb calorimeter, the temperature rises from 24.25°C to 32.33°C. Find ΔErxn for the

Solution: Mothballs are composed primarily of the hydrocarbon naphthalene (C10H8). When 1.025 g of naphthalene is burned in a bomb calorimeter, the temperature rises from 24.25°C to 32.33°C. Find ΔErxn for the

Problem

Mothballs are composed primarily of the hydrocarbon naphthalene (C10H8). When 1.025 g of naphthalene is burned in a bomb calorimeter, the temperature rises from 24.25°C to 32.33°C. Find ΔErxn for the combustion of naphthalene. The heat capacity of the calorimeter, determined in a separate experiment, is 5.11 kJ/°C.

Solution

Recall: The change in internal energy (ΔE) is given by:

A bomb calorimeter measures heat at constant volume. At constant volume, w = 0 which means:

View the complete written solution...