$\overline{){{\mathbf{q}}}_{{\mathbf{cal}}}{\mathbf{=}}{{\mathbf{C}}}_{{\mathbf{cal}}}{\mathbf{\u2206}}{\mathbf{T}}}$

$\mathbf{-}{\mathbf{q}}_{\mathbf{cal}}\mathbf{}\mathbf{=}{\mathbf{q}}_{\mathbf{rxn}}$

$\mathbf{\u2206}{\mathbf{E}}_{\mathbf{rxn}}\mathbf{=}\frac{{\mathbf{q}}_{\mathbf{rxn}}}{\mathbf{moles}\mathbf{}\mathbf{}{\mathbf{C}}_{\mathbf{12}}{\mathbf{H}}_{\mathbf{10}}}\mathbf{=}\frac{\mathbf{-}{\mathbf{q}}_{\mathbf{cal}}}{\mathbf{moles}\mathbf{}\mathbf{}{\mathbf{C}}_{\mathbf{12}}{\mathbf{H}}_{\mathbf{10}}}$

When 0.515 g of biphenyl (C_{12}H_{10}) undergoes combustion in a bomb calorimeter, the temperature rises from 25.9°C to 30.0°C. Find ΔE_{rxn} for the combustion of biphenyl. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.86 kJ/°C.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Constant-Volume Calorimetry concept. You can view video lessons to learn Constant-Volume Calorimetry. Or if you need more Constant-Volume Calorimetry practice, you can also practice Constant-Volume Calorimetry practice problems.