# Problem: Two substances A and B, initially at different temperatures, are thermally isolated from their surroundings and allowed to come into thermal contact. The mass of substance A is twice the mass of substance B, but the specific heat capacity of substance B is four times the specific heat capacity of substance A. Which substance will undergo a larger change in temperature?

###### FREE Expert Solution

$\overline{){\mathbf{q}}{\mathbf{=}}{\mathbf{mc}}{\mathbf{∆}}{\mathbf{T}}}$

+qabsorbs heat
–qloses heat

– qA = + qB

• mA = 2mB
• cB = 4cA

At thermal equilibrium:

▪ final temperature of A = final temperature of B = final temperature of system ###### Problem Details

Two substances A and B, initially at different temperatures, are thermally isolated from their surroundings and allowed to come into thermal contact. The mass of substance A is twice the mass of substance B, but the specific heat capacity of substance B is four times the specific heat capacity of substance A. Which substance will undergo a larger change in temperature?