$\overline{)\mathbf{w}\mathbf{=}\mathbf{-}\mathbf{P}\mathbf{\u2206}\mathbf{V}}$

density ice = 0.9168 g/cm^{3}

density water = 1.00 g/cm^{3}

$\mathbf{\u2206}\mathbf{V}\mathbf{=}\frac{\mathbf{1}\mathbf{}{\mathbf{cm}}^{\mathbf{3}}}{\mathbf{0}\mathbf{.}\mathbf{9167}\mathbf{}\mathbf{g}}\mathbf{-}\frac{\mathbf{1}\mathbf{}{\mathbf{cm}}^{\mathbf{3}}}{\mathbf{1}\mathbf{}\mathbf{g}}\phantom{\rule{0ex}{0ex}}\mathbf{\u2206}\mathbf{V}\mathbf{=}\mathbf{0}\mathbf{.}\mathbf{0908}\mathbf{}\frac{\overline{){\mathbf{cm}}^{\mathbf{3}}}}{\mathbf{g}}\mathbf{\times}\frac{\mathbf{1}\mathbf{}\overline{)\mathbf{mL}}}{\mathbf{1}\mathbf{}\overline{){\mathbf{cm}}^{\mathbf{3}}}}\mathbf{\times}\frac{{\mathbf{10}}^{\mathbf{-}\mathbf{3}}\mathbf{}\mathbf{L}}{\mathbf{1}\mathbf{}\overline{)\mathbf{mL}}}$

**ΔV = 9.08x10 ^{-5} L/g**

Find w for the freezing of water at -9.50˚C. The specific heat capacity of ice is 2.04 J/g•˚C and its heat of fusion is -332 J/g.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Heating and Cooling Curves concept. You can view video lessons to learn Heating and Cooling Curves. Or if you need more Heating and Cooling Curves practice, you can also practice Heating and Cooling Curves practice problems.