Ch.7 - Quantum MechanicsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Before quantum mechanics was developed, Johannes Rydberg developed an equation that predicted the wavelengths (λlambda) in the atomic spectrum of hydrogen: 1/λ = R(1/m2 - 1/n2). In this equation R is a constant and m and n are integers. Use the quantum-mechanical model for the hydrogen atom to derive the Rydberg equation.

Problem

Before quantum mechanics was developed, Johannes Rydberg developed an equation that predicted the wavelengths (λ) in the atomic spectrum of hydrogen: 1/λ = R(1/m2 - 1/n2). In this equation R is a constant and m and n are integers. Use the quantum-mechanical model for the hydrogen atom to derive the Rydberg equation.