Ch.7 - Quantum MechanicsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: A photovoltaic cell converts light into electrical energy. Suppose a certain photovoltaic cell is only 63.5% efficient, in other words, that 63.5% of the light energy is ultimately recovered. If the e

Problem

A photovoltaic cell converts light into electrical energy. Suppose a certain photovoltaic cell is only 63.5% efficient, in other words, that 63.5% of the light energy is ultimately recovered. If the energy output of this cell is used to heat water, how many 520 nm photons must be absorbed by the photovoltaic cell in order to heat 10.0 g of water from 20.0°C to 30.0°?