Ch.16 - Aqueous Equilibrium WorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Tooth enamel is composed of the mineral hydroxyapatite. The K sp of hydroxyapatite, Ca5(PO4)3OH, is 6.8 X 10 -37. Calculate the solubility of hydroxyapatite in pure water in moles per liter. How is the solubility of hydroxyapatite affected by adding acid? When hydroxyapatite is treated with fluoride, the mineral fluorapatite, Ca5(PO4)3F, forms. The Ksp of this substance is 1 X 10 -60. Calculate the solubility of fluorapatite in water. How do these calculations provide a rationale for the fluoridation of drinking water?

Problem

Tooth enamel is composed of the mineral hydroxyapatite. The K sp of hydroxyapatite, Ca5(PO4)3OH, is 6.8 X 10 -37. Calculate the solubility of hydroxyapatite in pure water in moles per liter. How is the solubility of hydroxyapatite affected by adding acid? When hydroxyapatite is treated with fluoride, the mineral fluorapatite, Ca5(PO4)3F, forms. The Ksp of this substance is 1 X 10 -60. Calculate the solubility of fluorapatite in water. How do these calculations provide a rationale for the fluoridation of drinking water?