Ch.14 - Chemical EquilibriumWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: You are a member of a research team of chemists discussing plans for a plant to produce ammonia:   N2(g) + 3H2(g) ⇌ 2NH3(g) (b) One member of the team suggests the following: since the partial pressur

Problem

You are a member of a research team of chemists discussing plans for a plant to produce ammonia:   

N2(g) + 3H2(g) ⇌ 2NH3(g) 

(b) One member of the team suggests the following: since the partial pressure of H 2 is cubed in the reaction quotient, the plant could produce the same amount of NH3 if the reactants were in a 1/6 ratio of N2/H2 and could do so at a lower pressure, which would cut operating costs. Calculate the partial pressure of each reactant and Ptotal under these conditions, assuming an unchanged partial pressure of 50 atm for NH3. Is the suggestion valid?