🤓 Based on our data, we think this question is relevant for Professor Longaker's class at UCD.

When dealing with a buffer, we use the **Henderson-Hasselbalch equation**:

$\overline{){\mathbf{pH}}{\mathbf{=}}{{\mathbf{pK}}}_{{\mathbf{a}}}{\mathbf{+}}{\mathbf{log}}\left(\frac{\mathbf{conjugate}\mathbf{}\mathbf{base}}{\mathbf{weak}\mathbf{}\mathbf{acid}}\right)}$

The reaction between HC_{2}H_{3}O_{2} and NaOH is shown below:

**HC _{2}H_{3}O_{2(aq)} + NaOH_{(aq)} **

(weak acid) (conjugate base)

***Na ^{+} is not included in the reaction because it is a neutral ion*

Calculate the initial amount of **HC _{2}H_{3}O_{2}** in moles:

$\overline{){\mathbf{molarity}}{\mathbf{}}{\mathbf{\left(}}{\mathbf{M}}{\mathbf{\right)}}{\mathbf{=}}\frac{\mathbf{mol}}{\mathbf{L}}}\phantom{\rule{0ex}{0ex}}\mathbf{moles}\mathbf{}{\mathbf{HC}}_{\mathbf{2}}{\mathbf{H}}_{\mathbf{3}}{\mathbf{O}}_{\mathbf{2}}\mathbf{}\mathbf{=}\mathbf{(}\mathbf{2}\mathbf{.}\mathbf{0}\frac{\mathbf{mol}\mathbf{}{\mathbf{HC}}_{\mathbf{2}}{\mathbf{H}}_{\mathbf{3}}{\mathbf{O}}_{\mathbf{2}}}{\overline{)\mathbf{L}}}\mathbf{)}\mathbf{\times}\mathbf{1}\mathbf{.}\mathbf{0}\mathbf{}\overline{)\mathbf{L}}$

**moles HC _{2}H_{3}O_{2} = 2.0 mol HC_{2}H_{3}O_{2}**

We need to construct an ICF chart to determine the amounts of the species after the reaction:

Substitute values in the Henderson-Hasselbalch equation:

$\overline{){\mathbf{pH}}{\mathbf{=}}{{\mathbf{pK}}}_{{\mathbf{a}}}{\mathbf{+}}{\mathbf{log}}\left(\frac{\mathbf{conjugate}\mathbf{}\mathbf{base}}{\mathbf{weak}\mathbf{}\mathbf{acid}}\right)}\phantom{\rule{0ex}{0ex}}\mathbf{pH}\mathbf{=}{\mathbf{pK}}_{\mathbf{a}}\mathbf{+}\mathbf{log}\left(\frac{\mathbf{x}}{\mathbf{2}\mathbf{.}\mathbf{0}\mathbf{-}\mathbf{x}}\right)\phantom{\rule{0ex}{0ex}}\mathbf{pH}\mathbf{-}{\mathbf{pK}}_{\mathbf{a}}\mathbf{=}\mathbf{log}\mathbf{\left(}\frac{\mathbf{x}}{\mathbf{2}\mathbf{.}\mathbf{0}\mathbf{-}\mathbf{x}}\mathbf{\right)}\phantom{\rule{0ex}{0ex}}\frac{\mathbf{0}}{\mathbf{log}}\mathbf{=}\frac{\overline{)\mathbf{log}}\mathbf{\left(}\frac{\mathbf{x}}{\mathbf{2}\mathbf{.}\mathbf{0}\mathbf{-}\mathbf{x}}\mathbf{\right)}}{\overline{)\mathbf{log}}}$

***log is a base of 10, when you divide a number by log, you will take 10 raised to the power of the number*

What quantity (moles) of NaOH must be added to 1.0 L of 2.0 M HC_{2}H_{3}O_{2} to produce a solution buffered at each pH?

a. pH = pK_{a}

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Buffer concept. You can view video lessons to learn Buffer. Or if you need more Buffer practice, you can also practice Buffer practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Longaker's class at UCD.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Chemistry: An Atoms First Approach - Zumdahl 2nd Edition. You can also practice Chemistry: An Atoms First Approach - Zumdahl 2nd Edition practice problems.