🤓 Based on our data, we think this question is relevant for Professor Petros' class at UNT.

**When dealing with equilibrium and K _{c}:**

• **K _{c} **→ equilibrium units are in molarity

•

$\overline{){{\mathbf{K}}}_{{\mathbf{c}}}{\mathbf{=}}\frac{\mathbf{products}}{\mathbf{reactants}}}$

▪ **only aqueous and gaseous species** are included in the equilibrium expression

▪ the **coefficient** of each compound in the reaction equation will be the **exponent **of the concentrations in the equilibrium expression

**Step 1**: Molarity of ICl

$\overline{){\mathbf{Molarity}}{\mathbf{=}}\frac{\mathbf{mole}\mathbf{}\mathbf{solute}}{\mathbf{L}\mathbf{}\mathbf{solution}}}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\mathbf{Molarity}\mathbf{,}\mathbf{}\mathbf{ICl}\mathbf{=}\frac{\mathbf{0}\mathbf{.}\mathbf{500}\mathbf{}\mathbf{mol}\mathbf{}\mathbf{ICl}}{\mathbf{5}\mathbf{.}\mathbf{00}\mathbf{}\mathbf{L}}$

**Molarity of ICl = 0.100 M**

In an analysis of interhalogen reactivity, 0.500 mol of ICl was placed in a 5.00-L flask, where it decomposed at a high T:

2ICl(g) ⥫⥬ I_{2}(g) + Cl_{2}(g)

Calculate the equilibrium concentrations of I_{2}, Cl_{2}, and ICl (K_{c} = 0.110 at this temperature).