Ch.14 - Chemical EquilibriumWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The minerals hematite (Fe2O3) and magnetite (Fe3O4) exist in equilibrium with atmospheric oxygen: 4Fe3O4(s) + O2(g) ⇌ 6Fe2O3(s) Kp = 2.5 x 1087 at 298 K(a) Determine PO2 at equilibrium.(b) Given that PO2 in air is 0.21 atm, in which direction will the reaction proceed to reach equilibrium?

Solution: The minerals hematite (Fe2O3) and magnetite (Fe3O4) exist in equilibrium with atmospheric oxygen: 4Fe3O4(s) + O2(g) ⇌ 6Fe2O3(s) Kp = 2.5 x 1087 at 298 K(a) Determine PO2 at equilibrium.(b) Given that

Problem

The minerals hematite (Fe2O3) and magnetite (Fe3O4) exist in equilibrium with atmospheric oxygen: 

4Fe3O4(s) + O2(g) ⇌ 6Fe2O3(s) Kp = 2.5 x 1087 at 298 K

(a) Determine PO2 at equilibrium.

(b) Given that PO2 in air is 0.21 atm, in which direction will the reaction proceed to reach equilibrium?