Problem: The activation energy for a reaction is changed from 184 kJ/mol to 59.0 kJ/mol at 600. K by the introduction of a catalyst. If the uncatalyzed reaction takes about 2400 years to occur, about how long will the catalyzed reaction take? Assume the frequency factor A is constant, and assume the initial concentrations are the same.

FREE Expert Solution
  • Arrhenius Equation shows the dependence of the rate constant on the pre-exponential factor, absolute temperature and activation energy of the reaction where:

  • The equation for the catalyzed and uncatalyzed reaction will appear as:


View Complete Written Solution
Problem Details

The activation energy for a reaction is changed from 184 kJ/mol to 59.0 kJ/mol at 600. K by the introduction of a catalyst. If the uncatalyzed reaction takes about 2400 years to occur, about how long will the catalyzed reaction take? Assume the frequency factor A is constant, and assume the initial concentrations are the same.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Arrhenius Equation concept. You can view video lessons to learn Arrhenius Equation. Or if you need more Arrhenius Equation practice, you can also practice Arrhenius Equation practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Tang's class at USF.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Chemistry: An Atoms First Approach - Zumdahl Atoms 1st 2nd Edition. You can also practice Chemistry: An Atoms First Approach - Zumdahl Atoms 1st 2nd Edition practice problems.