Ch.13 - Chemical KineticsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Assuming that the mechanism for the hydrogenation of C 2H4 given below is correct, would you predict that the product of the reaction of C2H4 with D2 would be CH2D—CH2D or CHD2—CH3? How could the reaction of C2H4 with D2 be used to confirm the mechanism for the hydrogenation of C2H4 given below?Heterogeneous catalysis of the hydrogenation of ethylene. (a) The reactants above the metal surface. (b) Hydrogen is adsorbed onto the metal surface, forming metal–hydrogen bonds and breaking the H—H bonds. The π bond in ethylene is broken and metal–hydrogen bonds are formed during adsorption. (c) The adsorbed molecules and atoms migrate toward each other on the metal surface, forming new C—H bonds. (d) The C atoms in ethane (C2H6) have completely saturated bonding capacities and so cannot bind strongly to the metal surfaces. The C2H6 molecule thus escapes.

Problem

Assuming that the mechanism for the hydrogenation of C 2Hgiven below is correct, would you predict that the product of the reaction of C2H4 with D2 would be CH2D—CH2D or CHD2—CH3? How could the reaction of C2H4 with D2 be used to confirm the mechanism for the hydrogenation of C2H4 given below?

Heterogeneous catalysis of the hydrogenation of ethylene. (a) The reactants above the metal surface. (b) Hydrogen is adsorbed onto the metal surface, forming metal–hydrogen bonds and breaking the H—H bonds. The π bond in ethylene is broken and metal–hydrogen bonds are formed during adsorption. (c) The adsorbed molecules and atoms migrate toward each other on the metal surface, forming new C—H bonds. (d) The C atoms in ethane (C2H6) have completely saturated bonding capacities and so cannot bind strongly to the metal surfaces. The C2Hmolecule thus escapes.