Ch.14 - Chemical EquilibriumWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: Many sugars undergo a process called mutarotation, in which the sugar molecules interconvert between two isomeric forms, finally reaching an equilibrium between them. This is true for the simple sugar glucose, C6H12O6, which exists in solution in isomeric forms called alpha-glucose and beta-glucose. If a solution of glucose at a certain temperature is analyzed, and it is found that the concentration of alpha-glucose is twice the concentration of beta-glucose, what is the value of K for the interconversion reaction?

Problem

Many sugars undergo a process called mutarotation, in which the sugar molecules interconvert between two isomeric forms, finally reaching an equilibrium between them. This is true for the simple sugar glucose, C6H12O6, which exists in solution in isomeric forms called alpha-glucose and beta-glucose. If a solution of glucose at a certain temperature is analyzed, and it is found that the concentration of alpha-glucose is twice the concentration of beta-glucose, what is the value of K for the interconversion reaction?