Ch.14 - Chemical EquilibriumWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: At a particular temperature, Kp = 0.25 for the reaction N2O4(g) ⇌ 2NO2(g)a. A flask containing only N2O4 at an initial pressure of 4.5 atm is allowed to reach equilibrium. Calculate the equilibrium pa

Problem

At a particular temperature, Kp = 0.25 for the reaction 

N2O4(g) ⇌ 2NO2(g)

a. A flask containing only N2O4 at an initial pressure of 4.5 atm is allowed to reach equilibrium. Calculate the equilibrium partial pressures of the gases.
b. A flask containing only NO2 at an initial pressure of 9.0 atm is allowed to reach equilibrium. Calculate the equilibrium partial pressures of the gases.

c. From your answers to parts a and b, does it matter from which direction an equilibrium position is reached?