Ch.13 - Chemical KineticsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Solution: The hydrolysis of the sugar sucrose to the sugars glucose and fructose, C12H22O11 + H2O ⟶ C6H12O6 + C6H12O6 follows a first-order rate equation for the disappearance of sucrose: Rate = k[C12H22O11] (T

Solution: The hydrolysis of the sugar sucrose to the sugars glucose and fructose, C12H22O11 + H2O ⟶ C6H12O6 + C6H12O6 follows a first-order rate equation for the disappearance of sucrose: Rate = k[C12H22O11] (T

Problem

The hydrolysis of the sugar sucrose to the sugars glucose and fructose, C12H22O11 + H2O ⟶ C6H12O6 + C6H12O6 follows a first-order rate equation for the disappearance of sucrose: Rate = k[C12H22O11] (The products of the reaction, glucose and fructose, have the same molecular formulas but differ in the arrangement of the atoms in their molecules.) k = 2.1 × 10−11 s-1 at 27 °C.

(b) When a solution of sucrose with an initial concentration of 0.150 M reaches equilibrium, the concentration of sucrose is 1.65 × 10−7 M. How long will it take the solution to reach equilibrium at 27 °C in the absence of a catalyst? Because the concentration of sucrose at equilibrium is so low, assume that the reaction is irreversible.

Solution

A first order reaction is a reaction whose rate depends linearly on the concentration of only one reactant. For a hypothetical reaction:


<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">A</mi><mo>&#xA0;</mo><mo>&#x2192;</mo><mo>&#xA0;</mo><mi mathvariant="normal">B</mi></math>


Rate of reaction is given by:


<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathcolor="#0000FF">r</mi><mi mathcolor="#0000FF">a</mi><mi mathcolor="#0000FF">t</mi><mi mathcolor="#0000FF">e</mi><mo mathcolor="#0000FF">&#xA0;</mo><mo mathcolor="#0000FF">=</mo><mo mathcolor="#0000FF">&#xA0;</mo><mi mathcolor="#0000FF">k</mi><msup><mfenced mathcolor="#0000FF" open="[" close="]"><mi>A</mi></mfenced><mn mathcolor="#0000FF">1</mn></msup></math>


Integrated rate law for a first-order reaction is:


<math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathcolor="#0000FF">l</mi><mi mathcolor="#0000FF">n</mi><msub><mfenced mathcolor="#0000FF" open="[" close="]"><mi>A</mi></mfenced><mi mathcolor="#0000FF">t</mi></msub><mo mathcolor="#0000FF">&#xA0;</mo><mo mathcolor="#0000FF">=</mo><mo mathcolor="#0000FF">&#xA0;</mo><mo mathcolor="#0000FF">-</mo><mi mathcolor="#0000FF">k</mi><mi mathcolor="#0000FF">t</mi><mo mathcolor="#0000FF">&#xA0;</mo><mo mathcolor="#0000FF">+</mo><mo mathcolor="#0000FF">&#xA0;</mo><mi mathcolor="#0000FF">l</mi><mi mathcolor="#0000FF">n</mi><msub><mfenced mathcolor="#0000FF" open="[" close="]"><mi>A</mi></mfenced><mn mathcolor="#0000FF">0</mn></msub><mspace linebreak="newline"></mspace><mi>w</mi><mi>h</mi><mi>e</mi><mi>r</mi><mi>e</mi><mo>,</mo><mspace linebreak="newline"></mspace><msub><mfenced open="[" close="]"><mi>A</mi></mfenced><mi>t</mi></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mo>&#xA0;</mo><mi>a</mi><mi>t</mi><mo>&#xA0;</mo><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo>&#xA0;</mo><mo>&quot;</mo><mi>t</mi><mo>&quot;</mo><mspace linebreak="newline"></mspace><msub><mfenced open="[" close="]"><mi>A</mi></mfenced><mn>0</mn></msub><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi>i</mi><mi>n</mi><mi>i</mi><mi>t</mi><mi>i</mi><mi>a</mi><mi>l</mi><mo>&#xA0;</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>c</mi><mi>e</mi><mi>n</mi><mi>t</mi><mi>r</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mspace linebreak="newline"></mspace><mi>k</mi><mo>&#xA0;</mo><mo>=</mo><mo>&#xA0;</mo><mi>r</mi><mi>a</mi><mi>t</mi><mi>e</mi><mo>&#xA0;</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>s</mi><mi>t</mi><mi>a</mi><mi>n</mi><mi>t</mi></math>


We have the following data:


View the complete written solution...