Problem: The rate constant for the decomposition of acetaldehyde, CH3CHO, to methane, CH4, and carbon monoxide, CO, in the gas phase is 1.1 × 10−2 L/mol/s at 703 K and 4.95 L/mol/s at 865 K. Determine the activation energy for this decomposition.

🤓 Based on our data, we think this question is relevant for Professor Collins' class at ECU.

FREE Expert Solution

We need to use the two-point form of the Arrhenius Equation:


ln(k2k1)=-EaR[1T2-1T1]


where k1 = rate constant at T1

k2 = rate constant at T2

Ea = activation energy (in J/mol)

R = gas constant (8.314 J/mol•K)

T1 and T2 = temperature (in K)


Solving for Ea:

View Complete Written Solution
Problem Details

The rate constant for the decomposition of acetaldehyde, CH3CHO, to methane, CH4, and carbon monoxide, CO, in the gas phase is 1.1 × 10−2 L/mol/s at 703 K and 4.95 L/mol/s at 865 K. Determine the activation energy for this decomposition.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Arrhenius Equation concept. You can view video lessons to learn Arrhenius Equation. Or if you need more Arrhenius Equation practice, you can also practice Arrhenius Equation practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Collins' class at ECU.

What textbook is this problem found in?

Our data indicates that this problem or a close variation was asked in Chemistry - OpenStax 2015th Edition. You can also practice Chemistry - OpenStax 2015th Edition practice problems.