🤓 Based on our data, we think this question is relevant for Professor Lehman's class at PDX.

Step 1

$\mathbf{35}\mathbf{.}\mathbf{3}\mathbf{}\overline{)\mathbf{g}\mathbf{}{\mathbf{CO}}_{\mathbf{2}}}\mathbf{}\mathbf{\times}\frac{\mathbf{1}\mathbf{}\mathbf{mol}\mathbf{}{\mathbf{CO}}_{\mathbf{2}}}{\mathbf{44}\mathbf{.}\mathbf{01}\mathbf{}\overline{)\mathbf{g}\mathbf{}{\mathbf{CO}}_{\mathbf{2}}}}$** = 0.8021 mol CO _{2}**

Step 2

$\overline{){\mathbf{PV}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{\mathbf{nRT}}}\phantom{\rule{0ex}{0ex}}\mathbf{P}\mathbf{\hspace{0.17em}}\mathbf{=}\mathbf{}\frac{\mathbf{nRT}}{\mathbf{V}}$

A 35.3 g sample of solid CO_{2} (dry ice) is added to a container at a temperature of 100 K with a volume of 4.2 L.

If the container is evacuated (all of the gas removed), sealed, and then allowed to warm to room temperature T = 298 K so that all of the solid CO_{2} is converted to a gas, what is the pressure inside the container?