Problem: Natural gas is very abundant in many Middle Eastern oil fields. However, the costs of shipping the gas to markets in other parts of the world are high because it is necessary to liquefy the gas, which is mainly methane and thus has a boiling point at atmospheric pressure of -164 oC. One possible strategy is to oxidize the methane to methanol, CH3OH, which has a boiling point of 65 oC and can therefore be shipped more readily. Suppose that 1.07×1010 ft3 of methane at atmospheric pressure and 25 oC are oxidized to methanol.Write balanced chemical equation for the oxidation of methane to CO2(g) and H2O(l).

FREE Expert Solution

reactant

methane gas → CH4 (g)

oxygen gas → O2 (g)

product

carbon dioxide gas → CO2(g)

water → H2O(l)


View Complete Written Solution
Problem Details

Natural gas is very abundant in many Middle Eastern oil fields. However, the costs of shipping the gas to markets in other parts of the world are high because it is necessary to liquefy the gas, which is mainly methane and thus has a boiling point at atmospheric pressure of -164 oC. One possible strategy is to oxidize the methane to methanol, CH3OH, which has a boiling point of 65 oC and can therefore be shipped more readily. Suppose that 1.07×1010 ft3 of methane at atmospheric pressure and 25 oC are oxidized to methanol.

Write balanced chemical equation for the oxidation of methane to CO2(g) and H2O(l).

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Balancing Chemical Equations concept. You can view video lessons to learn Balancing Chemical Equations. Or if you need more Balancing Chemical Equations practice, you can also practice Balancing Chemical Equations practice problems.