We’re being asked which correction dominates, the one for finite volume of gas molecules or the one for attractive interactions

The Van der Waals equation is shown below:

$\overline{)\left(\mathbf{P}\mathbf{+}\mathbf{a}\frac{{\mathbf{n}}^{\mathbf{2}}}{{\mathbf{V}}^{\mathbf{2}}}\right)\left(\mathbf{V}\mathbf{-}\mathbf{n}\mathbf{b}\right){\mathbf{=}}{\mathbf{n}}{\mathbf{R}}{\mathbf{T}}}$

▪ **P** = pressure, atm

▪ **V** = volume, L

▪ **n** = # of moles, mol

▪ **R** = gas constant = 0.08206 (L∙atm)/(mol∙K)

▪ **T** = temperature, K

▪ **a** = polarity coefficient

▪ **b **= size coefficient

Large amounts of nitrogen gas are used in the manufacture of ammonia, principally for use in fertilizers. Suppose 130.00 kg of N_{2}(g) is stored in a 1400.0 L metal cylinder at 290 ^{o}C.

Under the conditions of this problem, which correction dominates, the one for finite volume of gas molecules or the one for attractive interactions?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Van der Waals Equation concept. You can view video lessons to learn Van der Waals Equation. Or if you need more Van der Waals Equation practice, you can also practice Van der Waals Equation practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Lee's class at UCF.