Problem: In Sample Exercise 10.16 in the textbook, we found that one mole of Cl2 confined to 22.41 L at 0 oC deviated slightly from ideal behavior. Calculate the pressure exerted by 1.00 mol  Cl2 confined to a smaller volume, 6.00 L , at 25 oC.Use van der Waals equation for your calculation. (Values for the van der Waals constants are a = 6.49 L2atm/mol2, b = 0.0562 L/mol.)

FREE Expert Solution

We’re being asked to calculate the pressure exerted by one mole of chlorine, Cl2 gas using the Van der Waal’s equation


The Van der Waals equation is shown below:

P+an2V2V-nb=nRT

P = pressure, atm
V = volume, L
n = # of moles, mol
R = gas constant = 0.08206 (Latm)/(molK)
T = temperature, K
a = polarity coefficient
= size coefficient


Let’s first isolate the pressure in the Van der Waals Equation:

81% (322 ratings)
View Complete Written Solution
Problem Details

In Sample Exercise 10.16 in the textbook, we found that one mole of Cl2 confined to 22.41 L at 0 oC deviated slightly from ideal behavior. Calculate the pressure exerted by 1.00 mol  Cl2 confined to a smaller volume, 6.00 L , at 25 oC.

Use van der Waals equation for your calculation. (Values for the van der Waals constants are a = 6.49 L2atm/mol2, b = 0.0562 L/mol.)

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Van der Waals Equation concept. You can view video lessons to learn Van der Waals Equation. Or if you need more Van der Waals Equation practice, you can also practice Van der Waals Equation practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Bushey's class at TOWSON.