🤓 Based on our data, we think this question is relevant for Professor Alaghmand's class at HU.

$\overline{){\mathbf{F}}{\mathbf{=}}\frac{{\mathbf{kq}}_{\mathbf{1}}{\mathbf{q}}_{\mathbf{2}}}{{\mathbf{d}}^{\mathbf{2}}}}$

$\mathbf{W}\mathbf{=}\mathbf{F}\mathbf{\times}\mathbf{d}\mathbf{=}{\mathbf{F}}{\mathbf{=}}\left(\frac{{\mathrm{kq}}_{1}{q}_{2}}{{d}^{\overline{)2}}}\right)\overline{)\left(d\right)}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\overline{){\mathbf{W}}{\mathbf{=}}\mathbf{\left(}\frac{{\mathbf{kq}}_{\mathbf{1}}{\mathbf{q}}_{\mathbf{2}}}{\mathbf{d}}\mathbf{\right)}}$

A sodium ion, Na^{+}, with a charge of 1.6 x 10^{–19} C and a chloride ion, Cl^{–}, with charge of -1.6 x 10^{–19}, are separated by a distance of 5.3 nm. How much work would be required to increase the separation of the two ions to an infinite distance?