Calculate the heat capacity of the calorimeter:

$\overline{){\mathbf{Q}}{\mathbf{}}{\mathbf{=}}{\mathbf{}}{\mathbf{mC}}{\mathbf{\u2206}}{\mathbf{T}}}\phantom{\rule{0ex}{0ex}}\mathbf{C}\mathbf{=}\frac{\mathbf{(}\mathbf{0}\mathbf{.}\mathbf{240}\mathbf{}\mathbf{}\overline{)\mathbf{g}}\mathbf{)}\mathbf{(}\mathbf{26}\mathbf{.}\mathbf{38}\mathbf{}\frac{\mathbf{kJ}}{\overline{)\mathbf{g}}}\mathbf{}\mathbf{)}}{\mathbf{(}\mathbf{}\mathbf{1}\mathbf{.}\mathbf{643}\mathbf{\xb0}\mathbf{C}\mathbf{}\mathbf{)}}\phantom{\rule{0ex}{0ex}}\mathbf{Q}\mathbf{=}\mathbf{}\mathbf{3}\mathbf{.}\mathbf{85}\mathbf{}\frac{\mathbf{kJ}}{\mathbf{\xb0}\mathbf{C}}$

When a 0.240-g sample of benzoic acid is combusted in a bomb calorimeter, the temperature rises 1.643 ^{o}C . When a 0.270-g sample of caffeine, C_{8}H_{10}O_{2}N_{4}, is burned, the temperature rises 1.523 ^{o}C . Using the value 26.38 kJ/g for the heat of combustion of benzoic acid, calculate the heat of combustion per mole of caffeine at constant volume.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Thermochemical Equation concept. You can view video lessons to learn Thermochemical Equation. Or if you need more Thermochemical Equation practice, you can also practice Thermochemical Equation practice problems.