$\overline{){\mathbf{V}}{\mathbf{=}}\frac{\mathbf{4}}{\mathbf{3}}{{\mathbf{\pi r}}}^{{\mathbf{3}}}}$

$\frac{\mathbf{V}}{\frac{\mathbf{4}}{\mathbf{3}}\mathbf{\pi}}{\mathbf{=}}\frac{\overline{)\frac{\mathbf{4}}{\mathbf{3}}\mathbf{\pi}}{\mathbf{r}}^{{\mathbf{3}}}}{\overline{)\frac{\mathbf{4}}{\mathbf{3}}\mathbf{\pi}}}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\sqrt[\mathbf{3}]{\frac{\mathbf{3}}{\mathbf{4}}\mathbf{\pi V}}{\mathbf{=}}\sqrt[\mathbf{3}]{{\mathbf{r}}^{\mathbf{3}}}\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\overline{){\mathbf{r}}{\mathbf{=}}\sqrt[\mathbf{3}]{\frac{\mathbf{3}}{\mathbf{4}}\mathbf{\pi V}}}$

From the previous calculation, the volume of a single silver atom is 1.09×10^{-23} cm^{3}.

You are given a cube of silver metal that measures 1.050 cm on each edge. The density of silver is 10.5 g/cm^{3}.

Using the volume of a silver atom and the formula for the volume of a sphere, calculate the radius in angstroms of a silver atom.

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Density of Geometric Objects concept. You can view video lessons to learn Density of Geometric Objects. Or if you need more Density of Geometric Objects practice, you can also practice Density of Geometric Objects practice problems.