Ch.12 - SolutionsWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds
Solutions, Molarity and Intermolecular Forces
Henry's Law
Calculate Molarity
Mass Percent
Mole Fraction
The Colligative Properties
Additional Practice
Making Solutions
Freezing Point Depression
Additional Guides
The Freezing Point Depression (IGNORE)
Boiling Point Elevation
Jules Bruno

What are ppm and ppb?

In this lesson, we’ll learn the difference between parts per million and parts per billion. 

What is parts per million (ppm)?

Parts per million, which is abbreviated ppm, represents the mass of our solute which is a smaller portion of our solution divided by the mass of solution multiplied 106. 

Here, in this example we have 12.5 grams of carbon dioxide dissolved in 1750 g of water. This is the smaller amount, so this represents our solute. This is our much greater amount so this represents our solvent. Remember, your solution is your solute plus your solvent together. Once we plug this in, we’ll put the grams of solute on top divided by grams of solute plus grams of solvent on the bottom times 106. This gives us our parts per million of 7092.2 parts per million.

What is parts per billion (ppb)?

When it comes to parts per billion, which is abbreviated ppb, that’s almost the same exact formula. It’s still mass of solute divided by mass of solution. But because we’re dealing with billions here, it’d now be times 109. We’re going to say here we’re dealing with the same exact numbers, so our solute is still the carbon dioxide and our solvent is still the water. We plug in the same numbers but now we multiply it by 109 because again, we’re dealing with billions. In this case, it gives us 7.0922 x 106 parts per billion.


Just remember, there’s similarities between both of these terms. Parts per million deals with 106whereas parts per billion deals with 109.

Jules Bruno

Jules felt a void in his life after his English degree from Duke, so he started tutoring in 2007 and got a B.S. in Chemistry from FIU. He’s exceptionally skilled at making concepts dead simple and helping students in covalent bonds of knowledge.