Practice: A gas mixture with a total pressure of 812 mmHg contains the following gases at with their partial pressures: Cl_{2 }= 210 mmHg, H_{2} = 180 mmHg, CO_{2} = 215 mmHg. If argon gas is also present calculate its mole fraction.

Subjects

Sections | |||
---|---|---|---|

Pressure Units | 10 mins | 0 completed | Learn |

Manometer | 10 mins | 0 completed | Learn Summary |

Partial Pressure | 11 mins | 0 completed | Learn Summary |

The Ideal Gas Law | 47 mins | 0 completed | Learn Summary |

Standard Temperature and Pressure | 19 mins | 0 completed | Learn |

Effusion | 8 mins | 0 completed | Learn Summary |

Root Mean Square Speed | 11 mins | 0 completed | Learn Summary |

Kinetic Molecular Theory | 9 mins | 0 completed | Learn |

Van der Waals Equation | 22 mins | 0 completed | Learn |

Velocity Distribution | 7 mins | 0 completed | Learn |

Gas Theory Additional Problems | 74 mins | 0 completed | Learn |

Additional Practice |
---|

Chemistry Gas Laws |

Ideal Gas Law Density |

Ideal Gas Law Molar Mass |

Gas Stoichiometry |

Collecting Gas Over Water |

Kinetic Energy of Gases |

Additional Guides |
---|

Ideal Gas Law |

Boyle's Law |

Charles Law |

Combined Gas Law |

According to Dalton’s Law, the **total pressure** inside a container is obtained by adding all the **partial pressures** of each non-reacting gas.

Concept #1: Understanding Dalton's Law

**Transcript**

Welcome back guys. In this video, we're going to take a look at the partial pressure of gases. Now, what do I mean by partial pressure? What we said in the beginning, that pressure equals force over area. We saw a picture of the container with several different types of gas particles. We're going to say that the total pressure inside of that container comes from all the pressures that each of those particles added up.

Let's say we wanted to look at the pressure of one of those gas particles and ignore the others. The pressure of that one single gas particle would be that gas particles partial pressure. It just means the pressure of a gas when it surrounded by a bunch of different gases. We're not looking at the total pressure. We're looking at that gas particles individual pressure. That individual pressure is partial pressure.

We're going to say Dalton's law states that, 'In a container of unreacting gases,' that means that these gases are just bouncing off of each other. They're not connecting together to give me a new compound. 'The total pressure of the container is the sum of the partial pressure of the individual gases.' All these mean is let's say we have a container and its filled with three types of gases. It's filled with O2, argon and neon gas.

Let's say that the pressure of the oxygen gas is 0.3 atm and argon is 0.1 atm and neon is 0.3 atm. We'd say that each of them has those individual pressures—that's their partial pressures. Dalton's law says, while the total pressure inside of the container is just each of them added up together. According to Dalton's law, the total pressure equals 0.7 atm, and that 0.7 atm comes from us adding up each of those individual pressures together.

Concept #2: Understanding mole fraction and partial pressure

**Transcript**

We're going to say that the total pressure due like we said to the total number of moles of each of these gas particles. So pressure and moles are connected together. We're going to say the partial pressure of each gas molecule is a total pressure multiplied by the mole fraction of each gas particle or gas molecule. What the heck does that mean?

What I'm saying here is, the pressure of a gas, of any individual gas is equal to its mole fraction, mole fraction is X. We're going to say, 'What the heck is mole fraction?' Mole fraction is the moles of that gas divided by the total moles of all the gases. If we're looking for example the mole fraction of neon gas, it'd be the moles of neon divided by the moles of oxygen, argon plus neon on the bottom. That would give us the mole fraction of neon.

Once we get the mole fraction of a gas, we would multiply times the total pressure. That would then give me just the pressure of that one gas. Here this is just partial pressure. I know these ideas are kind of abstract, so that's why we're going to move on to the next question, the example. This is going to show us how exactly does, how do we find the partial pressure of the gas and does that relate to the mole fraction of that gas.

The **partial pressure** of a gas is based on the moles of that gas. The relationship of the different moles of gases helps us determine the **mole fraction** of each gas.

Example #1: A container has 16.7 g O_{2}, 8.1 g H_{2} and 35.2 g N_{2} and contains a total pressure of 0.83 atm. Calculate the mole fraction of O_{2} and its partial pressure.

Practice: A gas mixture with a total pressure of 812 mmHg contains the following gases at with their partial pressures: Cl_{2 }= 210 mmHg, H_{2} = 180 mmHg, CO_{2} = 215 mmHg. If argon gas is also present calculate its mole fraction.

A mixture of He and O2 is placed in a 4 L flask at 300 K. The partial pressure of the He is 2.7 atm and the partial pressure of the O2 is 1.4 atm. What is the mole fraction of O 2?
a. 0.341
b. 0.481
c. 0.518
d. 0.659
e. 0.224

A gaseous mixture containing 1.5 mol Ar and 3.5 mol CO 2 has a total pressure of 7.0 atm. What is the partial pressure of CO2?
a) 1.8 atm
b) 2.1 atm
c) 3.5 atm
d) 4.9 atm
e) 2.4 atm

A mixture of N 2, O2 and Ar have mole fractions of 0.25, 0.65, and 0.10, respectively. What is the pressure of N2 if the total pressure of the mixture is 3.9 atm?
A) 2.5 atm
B) 0.39 atm
C) 0.67 atm
D) 0.98 atm
E) 1.33 atm

A mixture of oxygen and helium is 92.3% by mass oxygen. It is collected at atmospheric pressure (687 torr). What is the partial pressure of oxygen in this mixture?
1. 446 Torr
2. 414 Torr
3. 688 Torr
4. 299 Torr
5. 333 Torr

A mixture of CO, CO2 and O2 is contained within a 275 mL flask at 0°C. if the total pressure is 780 torr, the CO has a partial pressure of 330 torr and the CO2 has a partial pressure of 330 torr, what is the partial pressure of O2?
1. 330 torr
2. 900 torr
3. 120 torr
4. 780 torr
5. 660 torr

The partial pressure of an ideal gas is equal to:
a. The pressure it would exert if it were at high pressure, same volume, and alone in a container
b. The pressure it would exert if it were at low pressure, same volume, and alone in a container.
c. The pressure it would exert if it occupied the same volume, alone in a container, at the same temperature.
d. The pressure it would exert if it were at low temperature, same volume, and alone in a container.
e. The pressure it would exert if it were at high temperature, same volume, and alone in a container.

A gaseous mixture of O 2 and N2 contains 39.8% nitrogen by mass. What is the partial pressure of oxygen in the mixture if the total pressure is 505 mmHg?
a. 171 mmHg
b. 60 mmHg
c. 870 mmHg
d. 288 mmHg
e. 700 mmHg

A mixture of He and O 2 is placed in a 4 L flask at 300 K. The partial pressure of the He is 2.7 atm and the partial pressure of the O2 is 1.4 atm. What is the mole fraction of O 2?
a. 0.341
b. 0.481
c. 0.518
d. 0.659
e. 0.224

A flask at equilibrium contained 1.00 mol of N 2 gas, 2.00 mol of H2 gas, and 3.00 mol of He gas. The total pressure in the container was 1.00 atm. What was the partial pressure of the He gas in torr?
a) none of the given answers
b) 380
c) 2280
d) 760
e) 4560

What is the vapor pressure of a solution with a benzene to octane molar ratio of 2:1?
(A) 120 mmHg
(B) 320 mmHg
(C) 400 mmHg
(D) 680 mmHg

A mixture of 0.50 moles of Ne and 0.25 moles of Ar has a total pressure of 1.6 atm. What is the partial pressure (in atm) of Ne?
A. 1.1 atm
B. 1.3 atm
C. 0.40 atm
D. 0.80 atm
E. 0.54 atm

A 100 L balloon is blown up with a mixture of gases. The mixture contains 2.1 moles of oxygen, 3.5 moles of nitrogen, and 1.8 moles of helium. Find the partial pressure for the oxygen if the balloon is at atmposheric pressure.
a. 0.28 atm
b. 0.47 atm
c. 0.24 atm
d. 0.22 atm
e. 0.78 atm

A mixture of 10.0 g of Ne and 10.0 g Ar have a total pressure of 1.6 atm. What is the partial pressure of Ne?
A) 1.3 atm
B) 1.1 atm
C) 0.80 atm
D) 0.40 atm
E) 0.54 atm

A vessel contains 0.1 mol H2 gas, 0.1 mol N2 gas, and 0.3 mol NH3 gas. The total pressure is 1000 torr. What is the partial pressure of
the H2 gas?
1. 1000 torr
2. 500 torr
3. 100 torr
4. 800 torr
5. 200 torr

A heliox deep-sea diving mixture contains 2.0 g of oxygen to every 98.0 g of helium. What is the partial pressure of oxygen when this mixture is delivered at a total pressure of 8.5 atm?

A flask at room temperature contains exactly equal amounts (in moles) of nitrogen and xenon.a. Which of the two gases exerts the greater partial pressure?

Calculate the vapor pressure at 25◦C of a mixture of benzene and toluene in which the mole fraction of benzene is 0.650. The vapor pressure at 25◦C of benzene is 94.6 torr and that of toluene is 29.1 torr.a. 51.3 torrb. 61.5 torrc. 84.4 torrd. 124 torre. 71.7 torr

Determine the vapor pressure of a solution at 25°C that contains 76.6 g of glucose (C6H12O6) in 250.0 mL of water. The vapor pressure of pure water at 25°C is 23.8 torr. (Density of water is 1.0 g/mL)A) 70.8 torrB) 72.9 torrC) 23.1 torrD) 22.9 torrE) 7.29 torr

Chloroform and methanol form an ideal solution. The solution boils at 22°C and 0.255 atm. At 22°C the vapor pressures of methanol and chloroform are 0.192 atm and 0.311 atm respectively. What is the mole fraction of chloroform in the solution?

A mixture of 0.220 moles CO, 0.350 moles H 2 and 0.640 moles He has a total pressure of 2.95 atm. What is the pressure of H2 (in atm)?a. 1.56 atmb. 0.649 atmc. 1.03 atmd. 0.853 atm

At 20 oC the vapor pressure of benzene C6H6 is 75 torr and that of toluene C7H8 is 22 torr. Assume that benzene and toluene form an ideal solution.In a solution composed of benzene and toluene that has a vapor pressure of 36 torr at 20 oC, what is the mole fraction of toluene?

A mixture of 10.0 g of Ne and 10.0 g of Ar has a total pressure of 1.6 atm. What is the partial pressure of Ne?a. 1.1 atmb. 0.8 atmc. 0.54 atmd. 0.40 atme. 1.3 atm

In a mixture of N 2 and O2 gases, the mol fraction of N 2 is found to be 0.700. The total pressure of the mixture is 1.42 atm. What is the partial pressure of O2 in the mixture?a) 0.211 atmb) 0.426 atmc) 0.493 atmd) 0.994 atm

A mixture of three gases has a pressure of 1380 mmHg at 298 K. The mixture is analyzed and is found to contain 1.27 mol CO2, 3.04 mol CO, and 1.50 mol Ar. What is the partial pressure of Ar? a. 238 mm Hg b. 302 mm Hg c. 356 mm Hg d. 1753 mm Hg e. 8018 mm Hg

A gas mixture contains CO, Ar and H 2. What is the total pressure of the mixture, if the mole fraction of H2 is 0.350 and the pressure of H 2 is 0.480 atm?

A gas mixture contains each of the following gases at the indicated partial pressures: N2, 211 torr; O2, 107 torr; and He, 149 torr. What is the total pressure in torr of the mixture? What mass in grams of each gas is present in a 1.15 - L sample of this mixture at 25.0 °C? Enter your answers numerically separated by commas.

A gas mixture consists of equal masses of methane (molecular weight 16.0) and argon (atomic weight 40.0). If the partial pressure of argon is 200. torr, what is the pressure of methane, in torr? Hint: what is the mole fraction of each gas?a. 256 torr b. 556 torr c. 80.0 torr d. 200. torr e. 500. torr

A gas mixture, with a total pressure of 300. torr, consists of equal masses of Ne (atomic weight 20) and Ar (atomic weight 40). What is the partial pressure of Ar in torr? A. 75 torr b. 100. torr c. 150. torr d. 200. torr e. None of these choices is correct.

The picture below shows two bulbs connected by a stopcock. The large bulb, with a volume of 6.00 L, contains nitric oxide at a pressure of 0.850 atm, and the small bulb, with a volume of 1.50 L, contains oxygen at a pressure of 2.50 atm. The temperature at the beginning and the end of the experiment is 22°C. After the stopcock is opened, the gases mix and react: 2NO (g) + O2 (g) → 2NO2 (g) Which gases are present at the end of the experiment? What are the partial pressures in atm of the gases? If the gas was consumed completely, put 0 for the answer.

In a container containing CO, H2, and O2, what is the mole fraction of CO if the H 2 mole fraction is 0.22 and the O2 mole fraction is 0.58?

A mixture of 0.220 moles Co, 0.350 moles H 2 and 0.640 moles He has a total pressure of 2.95 atm. What is the pressure of H2?

Enter your friends' email addresses to invite them:

We invited your friends!

Join **thousands** of students and gain free access to **46 hours** of Chemistry videos that follow the topics **your textbook** covers.