Ch.12 - SolutionsSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

According to Henry's Law, at a constant temperature the amount of a gas dissolved in a solvent is directly proportional to its partial pressure when it is in equilibrium with its liquid phase. 

Solutions & Solubility 

When an ionic solid dissolves, ions leave the solid and become dispersed in the solvent. This solution can be classified as saturatedunsaturated or supersaturated

Concept #1: Saturated, Unsaturated and Supersaturated Solutions. 

In a hypothetical solution 100 mL of water can dissolve up to 100 g of solute. In a SATURATED solution the water has reached its maximum amount of dissolve solute. 

In an UNSATURATED solution additional amounts of solute can be further dissolved in the solvent. 

In a SUPERSATURATED solution the solvent has dissolved beyond its maximum solubility. 

Example #1: Caffeine is about 10 times as soluble in warm water as in cold water. A student puts a hot-water extract caffeine into an ice bath, and some caffeine crystallizes. What is the identity of the solution before it’s been placed in an ice bath?

a) Saturated

b) Supersaturated

c) Unsaturated

d) Not enough information to answer the question. 

Concept #2: Understanding Henry's Law

Henry's Law relates the solubility of a gas over a solution based on the factors of temperature, volume and pressure. 

Example #2: Henry’s Law Constant for nitrogen in water is 1.67 x 10-4 M•atm-1. If a closed canister contains 113 ppb nitrogen, what would be its pressure in atm? 

As the temperature of the solution increases more and more gas molecules will exit the solvent. 

Practice: In general, as the temperature increases, the solubility of gas in a given liquid ________________, and the solubility of most solids in a given liquid ________________. 

a. Increases, increases

b. increases, decreases

c. decreases, increases

d. decreases, decreases

Practice: At a partial pressure of acetylene 1.35 atm, 1.21 moles of it dissolves in 1.05 L of acetonitrile. If the partial pressure of acetylene in acetone is increased to 12.0 atm, then what is its solubility?

Additional Problems
The solubility of an uknown gas at 1.28 atm is 0.528 mg/mL. Calculate the pressure at which the solubility of the gas is 0.367 mg/mL. a. 0.151 atm b. 0.889 atm c. 1.12 atm d. 0.248 atm e. 1.84 atm
True or false: The Henry's Law constant for a gas should decrease with an increase in temperature. __________
 The solubility of ammonia gas, NH 3, at 25 oC is 5.8 x 101 M/ atm. If the partial pressure of ammonia gas in air is 0.87 atm, what is the concentration (molarity) of the dissolved ammonia?  a. 4.05 x 101 M b. 7.68 x 101 M c. 6.98 x 101 M d. 5.05 x 101 M e. 1.41 x 101 M 
At what pressure will the solubility of carbon monoxide (CO) gas be 1.26 x 10  -1 g/L at 25 oC? The Henry's Law constant for carbon monoxide at 25 oC is 3.40 x 10-2 M/atm A. 3.71 atm B. 0.132 atm C. 7.56 atm D. 0.270 atm E. 1.53 x 10-4 atm
The "fizz" in a carbonated beverage is from carbon dioxide that has been dissolved in the aqueous solution. This is typically achieved by pressuring the "head space" (the empty space above the liquid in the bottle) with carbon dioxide gas.  a. What is the concentration of CO 2 in a soda that has been pressurized with 3.0 atm of CO 2 (in molarity)? Assume a Henry's law constant of 0.0769 M/atm.          b. How does the solubility of CO 2 in water change after it is opened and is at equilibrium with the air (i.e. does it become more or less soluble)?
Determine the Henry's law constant for ammonia in water at 25°C if an ammonia pressure of 0.022 atm produces a solution with concentration of 1.3 M. A) 59 M/atm B) 0.017 M/atm C) 0.029 M/atm D) 35 M/atm E) 0.038 M/atm
Calculate the pressure of O2 necessary to generate an aqueous solution that is 6.0 x 10‐2 M in O 2 at 25° C. The Henry’s law constant for  O 2 in water at 25°C is 1.3 x 10 ‐3 mole/L•atm A) 7.8 x 10‐5 atm B) 2.1 x 10‐2 atm C) 46 atm D) 1.28 x 104 atm E) none of these      
The solubility of N2 in blood at 37°C and a partial pressure of 0.8 atm is 5.6 x 10 ‐4 mole/L. A deep‐sea diver breathes compressed air with a partial pressure of N2 equal to 4.8 atm. Assume that the total volume of blood in the body is 5.0 L. Calculate the amount of N2 gas released (in liters at 37°C and 1.00 Atm) when the diver returns to the surface, where the partial pressure of N2 is 0.80 atm. A) 0.356 L B) 0.0540 L C) 0.427 L D) 0.342 L E) 0.085 L  
Why is it that the contents of a bottle of soda opened at room temperature tend to expand all over the persons hand’s holding the bottle, but the same bottle if opened when chilled just makes a slight hissing sound? 1. The carbon dioxide gas intentionally dissolved in the soda is more soluble at lower temperatures. 2. The bottle allows more gas to expand through the pores of the plastic at lower temperatures. 3. The bottle shrinks at low temperatures, creating less headspace for the gas above the soda, which means more gas dissolves in it, so less escapes when the bottle is opened. 4. The nitrogen gas intentionally dissolved in the soda is more soluble at lower temperatures.
Calculate the mass of nitrogen (in g) dissolved at room temperature in 50 L of water. The atmospheric pressure is 1.3 atm. Assume that the mole fraction of nitrogen is 0.78 in air and the Henry's law constant for nitrogen in water at this temperature is 6.1 x 10-4 M/atm. A. 0.019 g B. 0.017 g C. 0.865 g D. 0.433 g E. 8.65 x 10-3 g
Fish breathe the dissolved air in water through their gills. Assuming the partial pressures of N2 and O2 in air to be 0.80 atm and 0.20 atm, respectively, calculate the concentrations of oxygen and nitrogen in water at 298 K. Henry’s law constant for N2 (g) and O2 (g) in water at 298 K are 6.8 x 10-4 and 1.3 x 10-3 mol L-1 atm-1, respectively.
The solution of nitrogen gas at 25°C and a nitrogen pressure of 522 mmHg is 4.7 x 10 -4 mol/L. What is the value of Henry's Law constant in mol/L•atm? A. 6.8 x 10-4 mol/L • atm B. 9.0 x 10-7  mol/L • atm C. 1.5 x 10-4  mol/L • atm D. 3.2 x 10-4  mol/L • atm E. 4.7 x 10-4  mol/L • atm  
Determine the solubility of N2 in water exposed to air at 25°C if the atmospheric pressure is 1.2 atm. Assume that the mole fraction of nitrogen is 0.78 in air and the Henry's law constant for nitrogen in water at this temperature is 6.1 x 10-4 M/atm. A. 1.5 x 10-4 M B. 6.5 x 10-4 M C. 5.7 x 10-4 M D. 1.8 x 10-4 M E. 3.6 x 10-4 M
Perfluorinated compounds are hydrocarbons where most or all of the hydrogens have been replaced by fluorine atoms. Perfluorinated solvents have a number of interesting and exploitable properties. For example, oxygen is very soluble in perfluorinated solvents. and they have been investigated as temporary means of supplying oxygen in the case of very premature births before the lungs are fully developed. The Henry's law constant for C7F14 is 2.5 x 10-2 mol/L•atm at 25°C, roughly ten times greater than the Henry's law constant for water at that temperature.   A. Calculate the concentration in M of oxygen dissolved in C 7F14 exposed to air at 25°C. Air is 21% oxygen.           B. The concentration of oxygen in the umbilical vein is in the neighborhood of 20 mg/100 mL of blood. Convert your answer from Part A to mg/100 mL
The solubility of nitrogen gas at 25 °C and 1 atm is 6.8 × 10  -4 mol/L. If the partial pressure of nitrogen gas in air is 0.76 atm, what is the concentration (molarity) of dissolved nitrogen? A. 6.8 × 10 -4 M B. 5.2 × 10 -4 M C. 4.9 × 10 -4 M D. 3.8 × 10 -4 M E. 1.1 × 10 -5 M
The solubility of oxygen in lakes in the Rocky Mountains is affected by the altitude. If the solubility of O2 from the air is 2.67 x 10-4 M at sea level and 25°C, what is the solubility of O 2 at an elevation of 12,000 ft where the atmospheric pressure is 0.657 atm? Assume the temperature is 25°C, and that the mole fraction of O2 in air is 0.209 at both 12,000 ft and at sea level. A) 1.75 x 10-4 M B) 2.67 x 10-4 M C) 3.66 x 10-4 M D)4.06 x 10-4 M E) none of the above
Identify the TRUE statement describing trends in solubility. a. Increasing the temperature of a solution increases the solubility of gases in solution. b. Increasing the partial pressure of a gas above solution decreases the solubility of the gas in solution. c. The solubility of a gas in a solution increases as its molar mass increases. d. The solubility of most solids in solution increases as the pressure increases.
The solubility of CO2 in water at 25 °C and 1 atm is 0.034 mol/L. What is its solubility under atmospheric conditions where the partial pressure of CO2  is 0.003 atm? 
Calculate the number of moles of oxygen that will dissolve in 45 L of water at 20°C if the partial pressure of oxygen is 0.21 atm. Henry's constant for oxygen is 0.0013 mol/ L•atm 1. 0.00027 mol 2.  0.0013 mol 3. 0.012 mol 4. 0.0062 mol 5. 0.28 mol
Recently, I was given laughing gas (N 2O, MW = 44.013 g/mol) during some dental work. They did this by applying a tube over my nose and flowing N2O into the tube, increasing the partial pressure of N2O to 0.4 atm. If the concentration of N2O in my blood after the dental procedure was 1.25 x 10-3 M, calculate the Henry's law constant for N2O.
Calculate the mass of oxygen (in mg) dissolved in a 5.00 L bucket of water exposed to a pressure of 1.13 atm of air.  Assume the mole fraction of oxygen in air to be 0.21 and the Henryʹs law constant for oxygen in water at this temperature to be 1.3 × 10 -3 M/atm. A) 23.5 mg      B) 27.3 mg      C) 49.4 mg      D) 13.7 mg      E) 47.0 mg
Coca-Cola took a public relations hit a few months ago when it was discovered that their “scientists” stated that obesity was due to insufficient exercise and not sugary soft drinks (New York Times, August 9, 2015).  The partial pressure of carbon dioxide in the headspace of bottled Coke (the space above the liquid) is 3-4 atm, so let’s assume 3.5 atm. The Henry’s law constant for CO2(g) at 20°C is 3.91 x 10-2 mol/L∙atm. Calculate the solubility (mol/L) of carbon dioxide in water at 20°C.
In general, as the temperature increases, the solubility of gas in a given liquid ________________, and the solubility of most solids in a given liquid ________________.  Increases, increases Increases, decreases Decreases, increases Decreases, decreases
A mixture of gases contains 7.5 g H 2 and 29.6 g N 2 with a total pressure of 525 torr. Calculate the solubility of nitrogen gas if its Henry’s constant is 6.1 x 10  –4 M/atm. 
In deep sea diving, nitrogen is dissolved in the bloodstream under the high pressure. This leads to the condition known as “the bends.” Actually, nitrogen is much more soluble in fatty tissue than it is aqueous solutions (e.g. blood), and the nitrogen dissolved in the brain at a higher pressure can be a great concern for divers.   The Henry’s law constant for N2(g) in fatty tissue is around 2 x 10-3 mol/L•atm at 25°C (as opposed to 6.8 x 10-4 mol/L•atm in water at that same temperature). Calculate the concentration of N2(g) in fatty tissue if the air pressure is 2.5 atm (that would correspond to a depth of about 50 feet). Remember the air is roughly 79% nitrogen.
Calculate the number of grams of nitrogen gas that will dissolve in 125 L of water if the partial pressure of the nitrogen gas is 0.79 atm. Henry’s law constant for nitrogen gas is 0.00060 M/atm. A. 0.83 g B. 1.7 g C. 0.00047 g D. 0.059 g
Nitrogen gas, N2 (g), has a certain solubility when dissolved in octane (l). In which of the following cases would the solubility of N2 (g) decrease? I) lowering the temperature of the solvent II) increasing the amount of solvent III) reducing the pressure of N 2 (g) 1. I and II 2. II only 3. II and III 4. I and III 5. III only 6. I only 7. I, II and III
The Henry's law constant (k H) for O2 in water at 20°C is 1.28 x 10 -3 mol/L•atm. How many grams of O2 will dissolve in 1.75 L of H 2O in contact with air, where the partial pressure of O2 is 1.32 atm? A. 0.0541 g B. 0.0473 g C. 0.0946 g D. 0.0270 g E. 0.946 g
Henry's law constant for dissolved oxygen in water is k = 1.2 x 10  -3 M•atm-1. Suppose you could buy a bottle of water claiming that it contains 72 ppm oxygen. What pressure would the water have to be bottled under to obtain the claimed concentration? a. 60.0 atm b. 0.063 atm c. 3.68 atm d. 1.88 atm e. 1.61 atm  
As temperature increases, solubility of a solid in liquid generally ____________ while solubility of a gas in liquid generally ______________.A. Increases; DecreasesB. Increases; IncreasesC. Decreases; IncreasesD. Decreases; Decreases
Henry's Law constants (K) are the equilibrium constants for the reaction of a gas dissolving in a liquid; X(g)→X(aq). Which of the following should have the largest Henry's Law constant for dissolving in water?a. CO2b. Hec. Ard. N2e. NH3
Determine the partial pressure of oxygen necessary to form an aqueous solution that is 4.1 × 10–4 M O2 at 25°C. The Henry's law constant for oxygen in water at 25°C is 1.3 × 10 –3. A. 0.53 atm B. 0.24 atm C. 0.32 atm D.1.9 atm E. 0.77 atm
At 298 K, the Henry's law constant for oxygen is 0.00130 M/atm. Air is 21.0% oxygen. a) At 298 K, what is the solubility of oxygen in water exposed to air at 1.00 atm?     b) At 298 K, what is the solubility of oxygen in water exposed to air at 0.900 atm?     c) If atmospheric pressure suddenly changes from 1.00 atm to 0.900 atm at 298 K, how much oxygen will be released from 4.10 L of water in an unsealed container?
All carbonated beverages are bottled under pressure because____________________A) if the pressure is increased, the solubility of the gas will increase.B) this will avoid the external contamination during the storage process.C) if the pressure is increased, the solubility of the gas will decrease.D) the pressure is necessary to keep the gas above the solution.E) the temperature changes constantly but the gas will remain with the same solubility.
A) What is the Henry's law constant for CO 2 at 20°C? B) What pressure is required to achieve a CO 2 concentration of 9.60 x 10 -2? C) At 1 atm, how many moles of CO2 are released by raising the temperature of 1 liter of water from 20∘C to 25∘C?
Suppose that you have made a saturated solution of this solute using 53.0 g of water at 20.0 °C. How much more solute can you add if the temperature is increased to 30.0 C?
At 20° C and a partial pressure of 760 mmHg the solubility of CO2 in water is 0.169 g/100 mL. What is the solubility of CO2 at 2.7 x 104 mmHg?
Enter your answer in the provided box.Calculate the pressure of O2 necessary to generate an aqueous solution that is 4.9 x 10-2 M in O2 at 25°C. The Henry's law constant for O2 in water at 25°C is 1.3 x 10-3 mol/L atm.
Calculate the solubility (in M units) of ammonia gas in water at 298 K and a partial pressure of 3.50 bar. The Henry's law constant for ammonia gas at 298 K is 58.0 M/atm and 1 bar = 0.9869 atm. Express your answer in molarity to three significant figures.
Calculate the solubility of nitrogen in water at an atmospheric pressure of 0.41 atm (a typical value at high altitude). 
Use Henry's law to determine the molar solubility of helium at a pressure of 1.9 atm and 25°C. Henry's law constant for helium gas in water at 25°C is 3.70 x 10-4 M/atm. Express your answer using two significant figures.
At 25°C and 765 Torr, carbon dioxide has a solubility of 0.0342 M in water. What is its solubility at 25°C and 1210 Torr?
What is the quantitative relationship between gas solubility and pressure?a. Avogadro's Lawb. Entropyc. Enthalpyd. Boyle's lawe. Henry's law