Clutch Prep is now a part of Pearson
Ch.15 - Acid and Base EquilibriumWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch.17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds
Sections
Acids Introduction
Bases Introduction
Binary Acids
Oxyacids
Bases
Amphoteric Species
Arrhenius Acids and Bases
Bronsted-Lowry Acids and Bases
Lewis Acids and Bases
The pH Scale
Auto-Ionization
Ka and Kb
pH of Strong Acids and Bases
Ionic Salts
pH of Weak Acids
pH of Weak Bases
Diprotic Acids and Bases
Diprotic Acids and Bases Calculations
Triprotic Acids and Bases
Triprotic Acids and Bases Calculations
Additional Guides
Conjugate Acids and Bases

Diprotic Acids are compounds with two H+ ions

Diprotic Acids and Bases

Concept #1: Diprotic Acids possess 2 Ka values 

Concept #2: Diprotic Acids can dissociate into 3 forms.

Example #1: Carbonic acid, H2CO3, represents a weak diprotic acid with Ka1 = 4.3 x 10-7 and Ka2 = 5.6 x 10-11. Determine the base dissociation constant associated with the carbonate ion, CO32–.

Practice: Determine the equilibrium expression for the Ka2 of hydrosulfuric acid, H2S?