Ch.15 - Acid and Base EquilibriumWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds
Sections
Identifying Acids and Bases
Arrhenius Acid and Base
Bronsted Lowry Acid and Base
Amphoteric
Lewis Acid and Base
pH and pOH
Ka and Kb
Ionic Salts
Diprotic Acid
Polyprotic Acid
Additional Practice
Strong Acid-Base Calculations
Weak Acids
Additional Guides
Strong Acids and Strong Bases (IGNORE)
Conjugate Acids and Bases
Weak Bases

A diprotic acid is an acid that can donate two hydronium ions (H+). 

Diprotic Acids

Since a diprotic acid has two acidic hydrogens it would have 2 equilibrium equations. 

Concept #1: Diprotic Acids

The diprotic bases would also have 2 equilibrium equations. 

Concept #2: Diprotic Acids

Concept #3: As a result of these equations for diprotic acids and bases the relationship between Ka and Kb can be established. 

Example #1: Sulfurous acid, H2SO3, represents a diprotic acid with a Ka1 = 1.6 x 10-2 and Ka2 = 4.6 x 10-5. Calculate the pH and concentrations of H2SO3, HSO3 and SO32– when given 0.250 M H2SO3

Example #2: Determine the pH of 0.115 M Na2S. Hydrosulfuric acid, H2S, contains Ka1 = 1.0 x 10-7 and Ka2 = 9.1 x 10-8.