Practice: What is the velocity (in m/s) of an electron that has a wavelength of 3.13 x 10^{5} pm? (Mass of an electron = 9.11 x 10^{-31} kg).

Subjects

Sections | |||
---|---|---|---|

Wavelength and Frequency | 4 mins | 0 completed | Learn |

Speed of Light | 8 mins | 0 completed | Learn |

The Energy of Light | 13 mins | 0 completed | Learn |

Electromagnetic Spectrum | 11 mins | 0 completed | Learn Summary |

Photoelectric Effect | 14 mins | 0 completed | Learn Summary |

De Broglie Wavelength | 9 mins | 0 completed | Learn |

Heisenberg Uncertainty Principle | 14 mins | 0 completed | Learn |

Bohr Model | 15 mins | 0 completed | Learn |

Emission Spectrum | 6 mins | 0 completed | Learn |

Bohr Equation | 13 mins | 0 completed | Learn Summary |

Introduction to Quantum Mechanics | 5 mins | 0 completed | Learn Summary |

Quantum Numbers: Principal Quantum Number | 4 mins | 0 completed | Learn |

Quantum Numbers: Angular Momentum Quantum Number | 7 mins | 0 completed | Learn |

Quantum Numbers: Magnetic Quantum Number | 5 mins | 0 completed | Learn |

Quantum Numbers: Spin Quantum Number | 2 mins | 0 completed | Learn |

Quantum Numbers: Number of Electrons | 4 mins | 0 completed | Learn |

Quantum Numbers: Nodes | 3 mins | 0 completed | Learn |

Additional Practice |
---|

Diffraction vs Refraction |

Quantum Numbers: Emission Spectrum |

Dimensional Boxes |

The **De Broglie Wavelength** equation relates wavelength to velocity or speed.

Example #1: Find the wavelength of a proton with a speed of 6.25 x 10^{5} m/s. (Mass of a proton = 1.67 x 10^{-27} kg)

Practice: What is the velocity (in m/s) of an electron that has a wavelength of 3.13 x 10^{5} pm? (Mass of an electron = 9.11 x 10^{-31} kg).

Practice: The faster an electron is moving, the _________ its kinetic energy, and the __________ its wavelength.

Practice: Consider an atom traveling at 1% the speed of light. The de Broglie wavelength is found to be 7.1316 x 10^{-39} m. Which element is this?

0 of 5 completed

Calculate the wavelength in nanometers for a bullet weighing 5.0 g and traveling at 400 m/sec.
A) 3.3 x 10-34 m
B) 5.8 x 10-19 m
C) 1.5 x 10-38 m
D) 3.0 x 1033 m
E) 3.3 x 10-37 m

The de Broglie wavelength for a baseball moving at 25.0 m/s is 2 x 10-34 m. If a baseball could travel at the speed of light, what would be its de Broglie wavelength at that speed?
A) 1.7 x 10-41 m
B) 1.5 x 10-26 m
C) 1.7 x 10-43 m
D) 1.5 x 10-28 m
E) 1.5 x 10-24 m

Calculate the wavelength in meters for a bullet weighing 5.0 g and traveling at 400 m/sec.
A) 3.3 x 10-34 m
B) 5.8 x 10-19 m
C) 1.5 x 10-38 m
D) 3.0 x 1033 m
E) 3.3 x 10-37 m

What is the de Broglie wavelength of a bird being chased by Schrodinger’s cat, Albert? The bird has a mass of 0.5 kg and is flying at 20 m/s.
1. 6.626 × 10−35 m
2. 6.626 × 103 m
3. 6.626 × 10−38 m
4. 6.626 × 10−18 m
5. 6.626 × 10−15 m

In a scanning electron microscope (SEM), electrons are accelerated to great velocities. Calculate the wavelength of an electron traveling with a velocity of 1.7 x 104 meters per second. The mass of an electron is 9.1 x 10-28 g?
a) 4.3 x 10 -11 m
b) 4.3 x 10 -8 m
c) 1.8 x 10 4 m
d) 2.3 x 10 -35 m
e) 2 x 10 -33 m

The deBroglie wavelengths of a moving electron are given. Which wavelength would correspond to the greatest speed of the moving electron?a. 8.25 x 10 9 mb. 1.35 x 10 -13 mc. 8.25 x 10 12 md. 1.21 x 10 -6 me. 1.21 x 10 -10 m

Consider an atom travelling at 1% the speed of light. The de Broglie wavelength is found to be 3.32 x 10-3 pm. Which element is this?A.) HB.) CaC.) BeD.) PE.) F

The deBroglie wavelength can become significant for an object that is:A. low in mass and low in velocityB. low in mass and high in velocityC. high in mass and low in velocityD. high in mass and high in velocityE. found in degenerate orbitals

An electron (mass = 9.11x10 -31 kg) moves with a velocity of 5.00x10 8 cm s -1. What is its wavelength in angstroms (Å)?a. 1.45b. 9.72x10 -8c. 3.25x10 -9d. 2.91e. 0.970

In an explanation for the quantized energy levels of atoms de Broglie theorized that orbiting electrons might be at a fixed distance from the nucleus and thus only certain wavelength of wavelike motion would be stable. What is the implication of de Broglie's theory on the movement of matter? (a) Matter does not behave as though it moves in a wave. (b) All matter behaves as though it moves in a wave. (c) Only very fast moving matter behaves as though it moves in a wave. (d) Only very low mass matter behaves as though it moves in a wave. (e) Only very high matter behaves as though it moves in a wave.

In a scanning electron microscope the wavelength of the electrons used to image very small objects is 2.74 pm, what is the velocity of the electron in the instrument? (h = 6.63 x 10 -34 kg•m2/sec; 1.00 pm = 1.00x10 -12 m, me = 9.11x10 -31 kg; 1J = 1Kg•m2/sec2)

What is the wavelength of a He atom traveling at 1.96 x10 3 m/sec?(mass of He = 6.65 x10 -27 kg)

What is the wavelength of a marble (5 g) traveling at 372,889 m/s.

The faster an electron is moving, the __________ its kinetic energy, and the __________ its wavelength.(A) higher, shorter(B) higher, longer(C) lower, longer(D) lower, shorter(E) More than one of the answer choices will result in a true statement.

An electron is traveling at a speed of 3.00 x 105 m/s. What is its de Broglie wavelength?
a) 0.64 nm
b) 1.87 nm
c) 2.42 nm
d) 4.31 nm
e) Electrons do not have detectable wavelengths.

What is the wavelength of a neutron traveling at 4.15 km/s? [1J = 1 kg m 2 /s2; mass of neutron = 1.675×10−24 g; h = 6.63 x10 -34 J s; 1 km=1000 m]

The fastest serve in tennis is about 140 miles per hour, or about 63.2 m/s. Calculate the wavelength associated with an electron moving at this same velocity. (Mass of an electron = 9.11 x 10–31 kg)

Use the de Broglie relationship to determine the wavelengths of the following objects: (a) an 85-kg person skiing at 50 km/hr

Use the de Broglie relationship to determine the wavelengths of the following objects: (b) a 10.0-g bullet fired at 250 m/s

Use the de Broglie relationship to determine the wavelengths of the following objects: (d) an ozone (O3) molecule in the upper atmosphere moving at 550 m/s.

Among the elementary subatomic particles of physics is the muon, which decays within a few nanoseconds after formation. The muon has a rest mass 206.8 times that of an electron. Calculate the de Broglie wavelength associated with a muon traveling at a velocity of 8.85 x 105 cm/s.

Neutron diffraction is an important technique for determining the structures of molecules. Calculate the velocity of a neutron needed to achieve a wavelength of 0.955 Å. (Refer to the inside cover for the mass of the neutron).

The electron microscope has been widely used to obtain highly magnified images of biological and other types of materials. When an electron is accelerated through a particular potential field, it attains a speed of 9.38 x 106 m/s. What is the characteristic wavelength of this electron? Is the wavelength comparable to the size of atoms?

As the velocity of an object doubles, what is expected of its deBroglie wavelength of the object?
A. It will increase by a factor of four
B. It will increase by a factor of two
C. It will remain constant
D. It will decrease by a factor of two
E. It will decrease by a factor of four

What is the de Broglie wavelength of a bowling ball rolling down a bowling alley lane? Assume the mass of the ball is 4500 g and it is moving at 4.12 m/s.1. 1.4725 x 10–37 m2. 1.229 x 10–32 m3. 3.57389 x 10–35 m4. 3.574 x 10–38 m

What is the de Broglie wavelength (in meters) of a pitched baseball with a mass of 0.120 kg and a speed of 44.7 m/s? (1 J = 1 kg•m2/s2)A. 6.24 x 10-34 mB. 1.50 x 10-36 mC 1.24 x 10-34 mD. 0.76 x 10-34 mE. 6.24 x 10-36 m

What is the wavelength of a neutron traveling at 4.15 km/day? [1J = 1 kg m 2 /s 2 ; mass of neutron = 1.675×10 −24 g; h = 6.63 x10 -34 J s; 1 km=1000 m]

The smallest atoms can themselves exhibit quantum-mechanical behavior. Calculate the de Broglie wavelength (in pm) of a hydrogen atom traveling at 475 m/s.

Calculate the DeBroglie wavelength of an electron traveling with a velocity of 4.0 x 10 9 cm/sec in an electron microscope.A. 0.18 ÅB. 67 ÅC. 1.5 ÅD. 0.0018 ÅE. 1.1 x 10-38 Å

A certain rifle bullet has a mass of 6.93 g. Calculate the de Broglie wavelength of the bullet traveling at 1025 miles per hour. A= ___m

The mass of an electron is 9.11x10 -31 kg . If the de Broglie wavelength for an electron in a hydrogen atom is 3.31x10-10 m , how fast is the electron moving relative to the speed of light? The speed of light is 3.00 x 108 m/s . Express your answer numerically as a percentage of the speed of light.

The mass of a golf ball is 45.9 g. If it leaves the tee with a speed of 69.0m/s, what is its corresponding wavelength? Express your answer numerically in meters.

A certain rifle bullet has a mass of 8.85 g. Calculate the de Broglie wavelength (m) of the bullet traveling at 1769 miles per hour.

The de Broglie wavelength of a 455 kg car is found to be 5.43 × 10 –47 nm. Calculate the speed (m/s) of the car.a) 26.8 m/sb) 37.3 m/sc) 2.68 × 1019 m/sd) 3.73 × 107 m/se) 3.00 × 108 m/s

The deBroglie wavelengths of a moving electron are given. Which wavelength would correspond to the greatest speed of the moving electron?a. 8.25 x 10 9 mb. 1.35 x 10 -13 mc. 8.25 x 10 12 md. 1.21 x 10 -6 me. 1.21 x 10 -10 m

Enter your friends' email addresses to invite them:

We invited your friends!

Join **thousands** of students and gain free access to **46 hours** of Chemistry videos that follow the topics **your textbook** covers.