Ch.9 - Bonding & Molecular StructureSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Born Haber Cycle

See all sections
Sections
Chemical Bonds
Lattice Energy
Lattice Energy Application
Born Haber Cycle
Dipole Moment
Lewis Dot Structure
Octet Rule
Formal Charge
Resonance Structures
Additional Practice
Bond Energy

In the Born-Haber Cycle, ionic solids are created through the ionization of elements. 

The Born-Haber Process

Under the Born-Haber Cycle, the formation of an ionic solid is the result of a metal and a gaseous nonmetal combining together. 

Example #1: The Born-Haber cycle looks mainly at the formation of an ionic compound from gaseous ions. 

In order for the elements to combine they each must be ionized. Their opposing charges cause them to combine. 

Example #2: Using the Born-Haber Cycle, demonstrate the formation of cesium chloride, CsCl, and calculate its heat of formation. 

Additional Problems
Use the data given below to construct a Born-Haber cycle to determine the lattice energy of KBr.       ΔH°(kJ) K(s) → K(g)                                             89 K(g) → K+(g) + e-                                   419 ½ Br2(l) → Br(g)                                      96 Br(g) + e- → Br-(g)                                 -325 K(s) + ½ Br2(g) → KBr(s)                       -394   A) -885 kJ B) -673 kJ C) +367 kJ D) -464 kJ E) +246 kJ
When setting up the steps of the Born-Haber cycle for K 2O, how many ionization energies (IE) and how many electron affinities (EA) do you need, i.e., non-, first and second?   A) 2 IE, 0 EA B) 2 IE, 1 EA C) 1 IE, 2 EA D) 1 IE, 1 EA E) 0 IE, 2 EA
Using a Born-Haber cycle, calculate the lattice energy for lithium fluoride, LiF(s), given the following data: Sublimation energy for Li(s) = 166 kJ ⁄ mol first ionization energy for Li(g) = 520 kJ ⁄ mol bond energy for F2(g) = 158 kJ ⁄ mol–1 electron affinity for F(g) = –328 kJ ⁄ mol–1 enthalpy of formation of LiF(s) = –617 kJ ⁄ mol a) +101 kJ ⁄ mol b) +180 kJ ⁄ mol c) –329 kJ ⁄ mol d) –1054 kJ ⁄ mol e) –1133 kJ ⁄ mol
Please refer to the hypothetical Born-Haber cycle below for M(s) + X(s) → MX(s), where M and X are both elements in their standard states.  The ionization energy of M(s) is a) 351 kJ      b. 130 kJ     c. 481 kJ      d. 221 kJ      e. 702 kJ  
Please refer to the hypothetical Born-Haber cycle below for M(s) + X(s) → MX(s), where M and X are both elements in their standard states. The atomization energy of M(s) is a) 351 kJ      b. 130 kJ      c. 481 kJ      d. 221 kJ     e. 702 kJ
Please refer to the hypothetical Born-Haber cycle below for M(s) + X(s) → MX(s), where M and X are both elements in their standard states.  The enthalpy of formation (ΔH f) for MX(s) is: a. 938 kJ     b. 130 kJ     c. 808 kJ     d. 221 kJ     e. -221 kJ
Please refer to the hypothetical Born-Haber cycle below for M(s) + X(s) → MX(s), where M and X are both elements in their standard states.  The lattice enthalpy (ΔHL) for MX(s) is: a. 938 kJ     b. 130 kJ     c. - 808 kJ     d. 221 kJ     e. -221 kJ
In the Born-Haber cycle for Mg(s) + Cl 2(g)      →       MgCl 2(s), which step(s) is (are) exothermic for the formation of crystalline solid? (the following may not be balanced equations, but describe reaction processes.) (1) Mg(g) + 2Cl(g)      →       Mg 2+(g) + 2Cl(g) (2) Mg2+(g) + 2Cl(g)      →       Mg2+(g) + 2Cl - (g) (3) Mg(s) + Cl2(g)      →       Mg(g) + Cl 2(g) (4) Mg(s) + Cl2(g)      →       Mg(g) + 2Cl(g) (5) Mg2+(g) + 2Cl - (g)      →       MgCl 2(g) a. (1) and (3) b. (1), (3), and (4) c. (5) d. (2) and (5) e. (1), (2), and (5)
The diagram below is the Born-Haber cycle for the formation of crystalline potassium fluoride KF. Which energy change (by number) corresponds to the lattice energy of KF? a. 5 b. 2 c. 4 d. 1 e. 6
Use the Born-Haber cycle to calculate the lattice energy of NaCl. 1st Ionization Energy for Na = 495.9 kJ/mol 2nd Ionization Energy for Na = 4,560 kJ/mol Electron Affinity for Na = 53 kJ/mol Electron Affinity for Cl = 349 kJ/mol Energy to dissociate 1/2 mol of Cl2 into Cl atoms = 121.4 kJ ΔHsublimation (Na) = 108 kJ/mol ΔHf° (NaCl) = -411 kJ/mol
What is the enthalpy of sublimation for K, in kJ/mol?Given:Lattice energy of KCl = 699 kJ/molFirst ionization energy of K = 418.7 kJ/molElectron affinity of Cl = 349 kJ/molBond energy of Cl-Cl = 242.7 kJ/molEnthalpy of formation of KCl = -435.87 kJ/mol
Calculate lattice energy. The lattice energy of an ionic compound is the energy change when one mole of ionic solid is separated into its gaseous ions. Given the data below, find lattice energy for AlBr3, which is the ΔH° for the following reaction:
Use the data given below to construct a Born-Haber cycle to determine the electron affinity of Br.
Use the Born-Haber cycle to calculate the lattice energy of KCl(s) given the following data:ΔH(sublimation) K = 79.2 kJ/molI1 (K) = 418.7 kJ/molBond energy (Cl-Cl) = 242.8 kJ/molEA (Cl) = 348 kJ/molΔH°f (KCl(s)) = -435.7 kJ/mola. -165 kJ/molb. 288 kJ/molc. 629 kJ/mold. -707 kJ/mole. -828 kJ/mol
Use the data given below to construct a Born-Haber cycle to determine the heat of formation of KCl.H °(kJ)K(g) → K+(g) + e-418Cl2(g) → 2 Cl(g)244Cl(g) + e- → Cl-(g)-349KCl(s) → K+(g) + Cl-(g)717
Consider an ionic compound, MX, composed of generic metal M and generic, gaseous halogen X. The enthalpy of formation of MX is ΔH°f = -453 kJ/mol. The enthalpy of sublimation of M is ΔHsub = 127 kJ/mol. The ionization energy of M is IE = 431 kJ/mol. The electron affinity of X is ΔHEA = -301 kJ/mol. The bond energy of X2 is BE = 171 kJ/mol. Determine the lattice energy of MX.
Calculate the lattice energy of calcium chloride given that the heat of sublimation of Ca is 121 kJ/mol and ΔH°f(CaCl2) = -795kJ/mol.