Practice: Which of the electron transitions represents absorption with the greatest frequency?

Subjects

Sections | |||
---|---|---|---|

Wavelength and Frequency | 4 mins | 0 completed | Learn |

Speed of Light | 8 mins | 0 completed | Learn |

The Energy of Light | 13 mins | 0 completed | Learn |

Electromagnetic Spectrum | 11 mins | 0 completed | Learn Summary |

Photoelectric Effect | 14 mins | 0 completed | Learn Summary |

De Broglie Wavelength | 9 mins | 0 completed | Learn |

Heisenberg Uncertainty Principle | 14 mins | 0 completed | Learn |

Bohr Model | 15 mins | 0 completed | Learn |

Emission Spectrum | 6 mins | 0 completed | Learn |

Bohr Equation | 13 mins | 0 completed | Learn Summary |

Introduction to Quantum Mechanics | 5 mins | 0 completed | Learn Summary |

Quantum Numbers: Principal Quantum Number | 4 mins | 0 completed | Learn |

Quantum Numbers: Angular Momentum Quantum Number | 7 mins | 0 completed | Learn |

Quantum Numbers: Magnetic Quantum Number | 5 mins | 0 completed | Learn |

Quantum Numbers: Spin Quantum Number | 2 mins | 0 completed | Learn |

Quantum Numbers: Number of Electrons | 4 mins | 0 completed | Learn |

Quantum Numbers: Nodes | 3 mins | 0 completed | Learn |

Additional Practice |
---|

Diffraction vs Refraction |

Quantum Numbers: Emission Spectrum |

Dimensional Boxes |

In the **Bohr Model**, electrons can move up and down to different orbitals or shells based on absorbing or releasing of energy.

Example #1: Calculate the energy of an electron found in the second shell of the hydrogen atom.

Practice: Which of the electron transitions represents absorption with the greatest frequency?

Practice: Which of the following transitions (in a hydrogen atom) represent emission of the shortest wavelength?

Practice: If the energy of an electron within the boron atom was calculated as –6.0556 x 10^{-18} J, at what energy level would it reside?

Atoms with one electron can be modeled with an equation similar to the Bohr equation:
Ea = -2.179x10-18 J (Z2/n2)
In the equation, Z is the nuclear charge and n is the shell in which the electron resides. What is the ionization energy of Li2+, assuming its electron is originally in the n=1 level?
A. 984.1 kJ/mol
B. 1312 kJ/mol
C. 495 kJ/mol
D. 3937 kJ/mol
E. 2953 kJ/mol

According to the Bohr model for the hydrogen atom, the energy necessary to excite an electron from n = 1 to n = 2 is _______ the energy necessary to excite an electron from n = 5 to n = 6. equal to either less or equal to greater than less than either equal to or greater than

How many unique emission lines are observed from a system with four equally spaced energy levels?a. 1b. 2c. 3d. 4e. 5

Using the figure down below, complete the following statement: When an electron undergoes Transition A, it ________ energy, and when it undergoes Transition B, it ________ energy and __________. A. absorbs, emits, absorbs electromagnetic radiationB. absorbs, releases, absorbs electromagnetic radiationC. absorbs, releases, emits electromagnetic radiationD. releases, absorbs, absorbs electromagnetic radiationE. releases, absorbs, emits electromagnetic radiation

For a hydrogen atom, which case will result in an absorption spectrum with the highest frequency?a. an electron transition from n = 1 → n = 2b. an electron transitions from n = 1 → n = 4c. an electron transition from n = 2 → n = 3d. an electron transitions from n = 3 → n = 1e. an electron transition from n = 4 → n = 3

Using Bohr's equation for the energy levels of the electron in the hydrogen atom, determine the energy (J) of an electron in the n = 4 level.a) -5.45 x 10 -19b) -1.84 x 10 -29c) -1.36 x 10 -19d) +1.84 x 10 -29e) -7.34 x 1018

The lines in the emission spectrum of hydrogen result from __________. A) electrons given off by hydrogen as it coolsB) decomposing hydrogen atomsC) electrons given off by hydrogen when it burnsD) energy given off in the form of visible light when an electron moves from a higher energy state to a lower energy stateE) protons given off when hydrogen burns

The lines in the emission spectrum of hydrogen result from ___________________ .A) electrons given off by hydrogen as it coolsB) decomposing hydrogen atomsC) electrons given off by hydrogen when it burnsD) energy given off in the form of visible light when an electron moves from a higher energy state to a lower energy stateE) protons given off when hydrogen burns

Which of the following statements is or are true?1. An excited atom can return to a lower energy level by absorbing light energy.2. An atom can be excited by emitting light energy.3. As the energy of electromagnetic radiation increases, its frequency increases.4. The frequency and wavelength of light are inversely proportional.a) 1 and 2 onlyb) 2 onlyc) 2 and 3d) 1 and 3e) 3 and 4

According to the Bohr atomic theory, when an electron moves from one energy level to another further from the nucleusa) energy has been absorbedb) energy has been emittedc) light has been emittedd) photons have been dischargede) no change in energy is observed

Which emission line in the hydrogen spectrum occurs at the highest frequency?a) n = 3 → n = 1b) n = 4 → n = 2c) n = 7 → n = 5d) n = 10 → n = 8

Which of the following transitions (in a hydrogen atom) represent emission of the smallest or shortest wavelength? n = 4 to n = 2n = 3 to n= 4n = 1 to n = 2n = 7 to n = 5n = 2 to n = 5

Is energy emitted or absorbed when the following electronic transitions occur in hydrogen: (a) from n = 4 to n = 2

Indicate whether energy is emitted or absorbed when the following electronic transitions occur in hydrogen: (a) from n = 2 to n = 6

Consider the process of 2 H(g) → H2(g) where ΔH = −436 kJ/molDetermine if the sentence below is true or false.Shining light on hydrogen atoms could put electrons in n = 3, provided the intensity was sufficiently high.

Which of the following statements is (are) TRUE?I. An excited atom can return to its ground state by absorbing electromagnetic radiation.II. The energy of an atom is increased when electromagnetic radiation is emitted from it.III. The energy of electromagnetic radiation increases as its frequency increases.IV. An electron in the n = 4 state in the hydrogen atom can go to the n = 2 state by emitting electromagnetic radiation at the appropriate frequency.V. The frequency and wavelength of electromagnetic radiation are inversely proportional to each other. a) II, III, IV,b) III, Vc) I, II, IIId) III, IV, Ve) I, II, IV

According to the Bohr model for the hydrogen atom, which of the following transitions will emit light with the longest wavelength?a. from the n = 4 to n = 2 energy level.b. from the n = 4 to n = 3 energy level.c. from the n = 3 to n = 1 energy level.d. from the n = 6 to n = 2 energy level.e. from the n = 5 to n = 3 energy level.

Which match is incorrect?a) de Broglie Predicted that matter had a wave natureb) Planck Proposed that energy is released/absorbed in quantized packets of a photon c) Bohr Electron in hydrogen can only occupy orbits with energies of fixed valued) Heisenberg Proposed that electrons orbit the nucleus in well-defined spherical orbitse) Einstein Radiant energy is quantized in packets called photons

A) How much energy does the electron have initially in the n = 4 excited state? Enter your answer numerically in joules. B) What is the change in energy if the electron from Part A now drops to the ground state? Enter your answer numerically in joules.

Consider a hydrogen atom in the ground state. What is the energy (in J) of its electron? Now consider an excited-state hydrogen atom. What is the energy (in J) of the electron in the n = 3 level?

Consider a hydrogen atom in the ground state. What is the energy of its electron?Now consider an excited- state hydrogen atom. What is the energy of the electron in the n=4 level?

Which of the following processes is endothermic?a. An atom emits a photon.b. The electron gain process of a fluorine atom.c. An atom absorbs a photon.d. The condensation of water.e. None of the above processes are endothermic.

What wavelength of light will be required to remove an electron from the n = 3 shell of a hydrogen atom?

Which of the following electron transitions requires the smallest energy to be absorbed by the hydrogen atom?A. from n = 1 to n = 2B. from n = 2 to n = 4C. from n = 2 to n = 6D. from n = 3 to n = 6E. from n = 4 to n = 6

Which transition between energy levels in a hydrogen atom corresponds to the shortest wavelength of light?1. 5 → 62. 2 → 53. 2 → 34. 3 → 55. 3 → 46. 2 → 4

Which of the following transitions represent absorption of a photon with the highest frequency? n = 3 to n = 1n = 2 to n = 4n = 1 to n = 2n = 6 to n = 3n = 1 to n = 3

Which electronic transition in the hydrogen atom results in the emission of light of the shortest wavelength?A. n = 4 to n = 3B. n = 1 to n = 2C. n = 1 to n = 6D. n = 3 to n = 1E. n = 2 to n = 1

Which energy gap in the Bohr Model would be associated with the longest wavelength?(A) from n = 2 to n = 1(B) from n = 6 to n = 5(C) from n= 10 to n = 9(D) from n = 11 to n = 10(E) They have the same wavelength

Which of the following transitions represents the emission of a photon with the largest energy?A) n = 1 to n = 4B) n = 2 to n = 5C) n = 3 to n = 1D) n = 6 to n = 3E) n = 2 to n = 1

How much energy does the electron have initially in the n=4 excited state? Enter your answer numerically in joules. What is the change in energy if the electron from Part A now drops to the ground state? Enter your answer numerically in joules.

How much energy is required to ionize hydrogen: a. When it is in the ground state and b. When it is in the 2nd excited state with n = 3.

The bright lines of an emission spectrum are the result of _____.a. electrons being ejected from atomsb. electrons losing energy as they spiral into the nucleus of an atomc. electrons transitioning from a lower energy level to a higher energy leveld. electrons transitioning from a higher energy level to a lower energy level

Enter your friends' email addresses to invite them:

We invited your friends!

Join **thousands** of students and gain free access to **46 hours** of Chemistry videos that follow the topics **your textbook** covers.