Ch.18 - ElectrochemistryWorksheetSee all chapters
All Chapters
Ch.1 - Intro to General Chemistry
Ch.2 - Atoms & Elements
Ch.3 - Chemical Reactions
BONUS: Lab Techniques and Procedures
BONUS: Mathematical Operations and Functions
Ch.4 - Chemical Quantities & Aqueous Reactions
Ch.5 - Gases
Ch.6 - Thermochemistry
Ch.7 - Quantum Mechanics
Ch.8 - Periodic Properties of the Elements
Ch.9 - Bonding & Molecular Structure
Ch.10 - Molecular Shapes & Valence Bond Theory
Ch.11 - Liquids, Solids & Intermolecular Forces
Ch.12 - Solutions
Ch.13 - Chemical Kinetics
Ch.14 - Chemical Equilibrium
Ch.15 - Acid and Base Equilibrium
Ch.16 - Aqueous Equilibrium
Ch. 17 - Chemical Thermodynamics
Ch.18 - Electrochemistry
Ch.19 - Nuclear Chemistry
Ch.20 - Organic Chemistry
Ch.22 - Chemistry of the Nonmetals
Ch.23 - Transition Metals and Coordination Compounds

Batteries act as spontaneous electrochemical cells that help to generate electricity. 

Dry-Cell Batteries

These types of batteries get their names from the fact that they contain very little water. 

Concept #1: Dry-Cell Batteries

The overall reaction within a typical dry-cell battery is  

Zn (s) + 2 MnO2 (s) + 2 NH4+ (aq) → Zn2+ (aq) + Mn2O3 (s) + 2 NH3 (g) + H2O (l)

Alkaline Batteries

These types of batteries get their names from the fact that they operate within a basic medium. 

Concept #2: The counterpart to an acidic dry-cell battery is the alkaline battery. 

The overall reaction within a typical alkaline battery is  

Zn (s) + 2 MnO2 (s) + 2 H2O (l) → Zn(OH)2 (s) + 2 MnO(OH) (s)