Ch. 5 - Protein TechniquesWorksheetSee all chapters
All Chapters
Ch. 1 - Introduction to Biochemistry
Ch. 2 - Water
Ch. 3 - Amino Acids
Ch. 4 - Protein Structure
Ch. 5 - Protein Techniques
Ch. 6 - Enzymes and Enzyme Kinetics
Ch. 7 - Enzyme Inhibition and Regulation
Ch. 8 - Protein Function
Ch. 9 - Carbohydrates
Ch. 10 - Lipids
Ch. 11 - Biological Membranes and Transport
Ch. 12 - Biosignaling
Clutch Review 1: Nucleic Acids, Lipids, & Membranes
Clutch Review 2: Biosignaling, Glycolysis, Gluconeogenesis, & PP-Pathway
Clutch Review 3: Pyruvate & Fatty Acid Oxidation, Citric Acid Cycle, & Glycogen Metabolism
Clutch Review 4: Amino Acid Oxidation, Oxidative Phosphorylation, & Photophosphorylation
Sections
Protein Purification
Protein Extraction
Differential Centrifugation
Salting Out
Dialysis
Column Chromatography
Ion-Exchange Chromatography
Anion-Exchange Chromatography
Size Exclusion Chromatography
Affinity Chromatography
Specific Activity
HPLC
Spectrophotometry
Native Gel Electrophoresis
SDS-PAGE
SDS-PAGE Strategies
Isoelectric Focusing
2D-Electrophoresis
Diagonal Electrophoresis
Mass Spectrometry
Mass Spectrum
Tandem Mass Spectrometry
Peptide Mass Fingerprinting
Overview of Direct Protein Sequencing
Amino Acid Hydrolysis
FDNB
Chemical Cleavage of Bonds
Peptidases
Edman Degradation
Edman Degradation Sequenator and Sequencing Data Analysis
Edman Degradation Reaction Efficiency
Ordering Cleaved Fragments
Strategy for Ordering Cleaved Fragments
Indirect Protein Sequencing Via Geneomic Analyses

Concept #1: Ordering Cleaved Fragments to Obtain Protein Sequence

Concept #2: Overlapping Peptide Fragments from Different Cleavage Reagents

Practice: Overlap, align & order the following peptide fragments to reveal the sequence of the original protein.

Fragments from cleavage method #1: 


Fragments from cleavage method #2: