Ch. 11 - Biological Membranes and Transport WorksheetSee all chapters
All Chapters
Ch. 1 - Introduction to Biochemistry
Ch. 2 - Water
Ch. 3 - Amino Acids
Ch. 4 - Protein Structure
Ch. 5 - Protein Techniques
Ch. 6 - Enzymes and Enzyme Kinetics
Ch. 7 - Enzyme Inhibition and Regulation
Ch. 8 - Protein Function
Ch. 9 - Carbohydrates
Ch. 10 - Lipids
Ch. 11 - Biological Membranes and Transport
Ch. 12 - Biosignaling
Clutch Review 1: Nucleic Acids, Lipids, & Membranes
Clutch Review 2: Biosignaling, Glycolysis, Gluconeogenesis, & PP-Pathway
Clutch Review 3: Pyruvate & Fatty Acid Oxidation, Citric Acid Cycle, & Glycogen Metabolism
Clutch Review 4: Amino Acid Oxidation, Oxidative Phosphorylation, & Photophosphorylation
Sections
Biological Membrane Transport
Passive vs. Active Transport
Passive Membrane Transport
Facilitated Diffusion
Erythrocyte Facilitated Transporter Models
Membrane Transport of Ions
Primary Active Membrane Transport
Sodium-Potassium Ion Pump
SERCA: Calcium Ion Pump
ABC Transporters
Secondary Active Membrane Transport
Glucose Active Symporter Model
Endocytosis & Exocytosis
Neurotransmitter Release
Summary of Membrane Transport
Thermodynamics of Membrane Diffusion: Uncharged Molecule
Thermodynamics of Membrane Diffusion: Charged Ion

Concept #1: Glucose Active Symporter Model

Practice: Which of the following is TRUE about the Na+-glucose symporter?

Practice: The Na+-Glucose symporter effectively transports glucose inside of cells against its concentration gradient using energy stored in the Na+ concentration gradient. This energy for glucose transport is derived from the ____________.

Practice: The Na+-Glucose symporter transports the two molecules into the cell, while the Na+-K+ ATPase uses ATP to transport Na+ ions out of the cell. What would be the result of a mutation leading to a nonfunctional Na+-Glucose symporter?

Practice: Imagine that you perform a series of experiments to test the rate of glucose transport (V0) into epithelial cells using the Na+-Glucose symporters. These experimental epithelial cells contain no intracellular Na+ but have the same glucose concentration as their surroundings. In experiment #1, you transfer your cells to test tubes that contain different extracellular [Na+] & then measure the rate of glucose transport (V0). In experiment #2, you introduce leakage Na+ channels into the cell membranes & then repeat the same experiment. Label the data on the plot below as showing results to either Experiment #1 or Experiment #2.